For users of Hewlett-Packard 9800
Series Desktop Computers. Compiled
and edited from Keyboard magazine.

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Introduction

This book represents the continuing commitment of Hewlett-Packard to support all of our
desktop computer users. In publishing ‘‘Programming Tips” in each bi-monthly issue of
Keyboard magazine, we forward these ideas as they are generated. Now, in one compiled,
edited presentation, you have access to all published Programming Tips for HP 9800 Series
Desktop Computers. These Tips have appeared in Keyboard during the decade that we have
published the magazine; the book is a “10th anniversary gift” to you.

The editing effort involved more than correcting typographical or other errors; duplicate
Tips were combined or eliminated, and we were able to take mainframe improvements into
account where they have eliminated the need for certain Tips; finally, some readers offered
improvements to previously-published Tips, and these too, have been included in this book.

As is the case with all Programming Tips, these should help you to do some existing tasks
with greater ease and effectiveness. They should also give you ideas about new things you can
do with your computer, perhaps in areas of applications you had not considered before.

We hope you enjoy this book and reference it regularly. We have organized the Tips by
mainframe to make scaning easier, and have provided an index as well. You can put the book
up on your reference shelf as is, or separate the pages and keep them in a three-ring
notebook, where you can add new pages from Keyboard as we publish more Tips.

~--Computer.

- Museum
[Tow

Many people at HP’s Desktop Computer Division have worked to help debug, update and compile these Tips.
Others worked to typeset the copy, proofread all the material and present it to you in a visually appealing fashion.
These people include: Hal Andersen, Ed Bride, Paula Dennee, Wendy Hart, gteve Hug, Brenda Hume, Donna

Kimble, Martin Nielsen, Bill Sharp and Chris Stumbough.

Table of Contents

Section 1 - 9835 and 9845

Instant Success Using System 45A/B Graphics 1-1
Minimize File Access Timeoi i, 1-1
Label Centering.ooiuiiiiii i iiaieaias 1.2
Better Label Centering 1-2
READ DATAErrorRecovery ..., 1-2
Dynamic File Allocation System 35A/745A/45B 1-3
MAT SORT & MAT SEARCH System 35A/35B/45B 14
Transfering Data From 9830 to System45....................... 1-5
Character Slant in a System 45/9872 System 16
Continuous Plots Using System 45A/B Graphics 1-6
9862 BASIC Language Driverscoiiiinannn. 1.7
Section 2 - 9830

Random Number Generation 2.1
Random Number Generation 2-1
A Tip On Faulty Cassette Tapes 2-1
On the Effidency of the POS Function. 2.2
Reading 5-Hole Telex Tapeoiiiiiiiiiinn.. 2.2
ConservingCore Memory, 22
Calculations During Inputo o 23
S.F. Key Programs Used inProgram 2.3
Eliminating RND Predictability 2-3
Sorting and PairingNumbers.l 23
Obtaining Non-Keyboard Characters 24
Obscure Uses of the RES Register 24
Outputting Non-Keyboard Characters 24
Null Sting Entry . ..o 2.5
Use of Dummy Variables to Control Programs from the 9864A 26
String Variables 2-6
Available Memory 2-6
More on Available Memoryol 2.7
A “Keyboard Interrupt” 2-7
Interrupt Systermnt 2.7
A Method of Inputting Variables 2.8
WAIT Withina DISPLAY 28
Monetary Formatting 28
Quick XREF i 28
ARCTGinthe0°t0360°Rangec.ovviinvnnennn.. 29
Storing AlphaonaDataTapecciiiiin 29
Synchronization Between Timeshare and the 9830A 29
Right Justifying Input Strings L. 2-10
String Comparnisonso.viiiite i 2-10
Using the Special Function Keys to RepresentData 2-10
Sinde-Line Cross Reference 2-11
Calculations During Program Execution. 2-11
Increasing Storage Capacitycoiiiiiiini.. 2-12
Speeding Cassette Tape Access Time 2-12
Recoverable Error 59s i 2-13
SpeedingExecution Timeccovieiii... 2-13
Signalingthe EndofaProgram 2-14
Aligning Printed Headings 2-14
Transferring Program Files Between Two Mass Memory Units 2-14
Avoiding VAL FunctionErrors 2-15
Inputting Varying Quantities of Numbers 2-15
Converting FORTRAN Programs 2-16
Salvaging a Program with ERROR 59 (98304)................... 2-17
WRITE and FORMAT Incorporating Vanable Length Strings 2-18
WRITE and FORMAT Incorporating Variable Length Strings 2-18
FORMATtingtheDisplay 2-18
TransferringValues 2-18
Determining the CentroidofaFigure 2-19
Implementinga Binary Switch. 2-19
A Structured Approach To Program Overlays 2-20

Section 3 - 9825

Refill of Word-Oriented Buffers 3-1
Howto MoveaProgramline 3-1
Filling a Stringwith Spaces 3-1
Labeling Special FunctionKeys. 3-2
Subroutines and Functions 3-2

CatalogingFiles 3-2

Detecting Missing Data in Formatted Input

with the General Y/OROM 3-2
Temporary Buffer 33
MemoryFiles......... ... 33
Changing Number Format 34
READ/DATA Capabilityin HPL 34
Erasing 9825A Tape Cartridgesooiviiiiiniine. 3-5
A Fix for Backup CopyCommand 3-5
Instrument Approach and LandingGame 3-5
Section 4 - 9820/9821
Rectangular to Polar Coordinates 4-1
Rect/Pdlar and Polar/Rect Subroutines 4-1
One-Line Averagingooouiiiiiiniinniainanen.. 4-2
Use of Card Reader and Printer ToList Cards 42
EntrySpaceSaving. 43
Recovering A “Lost” Program From ATapeFile 43
Arctan Between + 180 Degreeso 44
Stored Data Printouto 44
Foolproof Data EntryLine it 44
Divisibility Test. 4.5
Transferring Program Lines 4-5
Incrementing Logarithmic Scales. 4-5
Multiple Execution of SingleLine 4-6
Integer X Without MatROM 4-6
“Table” Identification i i 4-6
Logical Comparisonc.. i 4-6
9820 Data Storagecovr e e 4-6
FastCircle Plot s 4-7
Identifying the Last Marked File 4.7
Tape Duplication it 4-7
Speeding Counters i 48
DoubleUnaryMinus................oiiiiii. ... 4.8
Change Settings During Program Execution 4-9
Flag 1 Switch During Program Execution. 49
Litle Things That Count 4-9
One-Line ?(s'/Y Integration, 49
Answering the Challenge of One-Line X/Y Integration 49
LetteringSyntax 4-10
Extending Definable Functions 4-10
BASIC Integer To Algebraic 4-10
FasterIntegerPowers 4-10
High Speed File Identification 4-11
“DO”LO0PS . oot 4-11
Section 5 - 9815
Duplicating Tape Cartridges 5-1
9815ADataEntry 5-2
Biocurve and Bionumberson the 9815 5-2
Section 6 - 9810
Printer Alpha Test i, 6-1
Clearing Data Registers 6-2
Economical “IfY = 0" Test..................0cciviiiiniinn.. 6-2
Sequential If Conditions...................................... 6-2
TerminatingDataEntry 6-2
Extending Definable Function Key To Any Number of Functions.. 6-3
DataPrintout 63
Extending Lagrangian Interpolation 64
Special Label Sequence 64
Non-ZeroDataPrintout 6-5
PenDropControl 6-5
Section 7 - General
9800 Program Verification 7-1
Reducing Forward Search Time In Cassette Applications 7-1
Improved Tape ldentification (98654) 7-1
Magnetic Card Versatility (9810,9820) 7-1
Changing Programs Fromthe HP 6510 9815A 7-2

Making Dashed Plots with the 9862A

Section 1
9835 and 9845

Index
Section 1 - 9835 and 9845

Instant Success Using System 45A/B Graphics 1-1
Minimize File Access Time 1-1
Label Centering 1-2
Better Label Centering i 1-2
READ DATA Error Recovery 1-2
Dynamic File Allocation System 35A/45A/45B 1-3
MAT SORT & MAT SEARCH System 35A/35B/45B 14
Transferring Data From 9830 to System 45 1-5
Character Slant in a System 45/9872 Systemt 1-6
Continuous Plots Using System 45A/B Graphics 1-6

9862 BASIC Language Drivers i 1-7

Instant Success Using
System 45A/B Graphics

by Donna Kimble, Hewlett-Packard Company, Desktop
Computer Division

Any manager, engineer or secretary can create graphic
outputs on the System 45 CRT and get printed copy from
the internal printer. All you need is the Graphics Option and
the Printer Option.

1. Type PLOTTER IS “GRAPHICS”
Press EXECUTE
2. Type LETTER
Press EXECUTE
Type your message, using the display control

T

arrows «— — to move the cursor to any part of the

y
screen. To gain finer control over the cursor, press
the SHIFT key and the display control arrows at the
same time: this will cause the cursor to move 1/10th
of a character space at a time.

When finished typing your message,

Press STOP
Type DUMPGRAPHICS
Press EXECUTE
If you want another copy, repeat Step 3.
If you want to add more to your graphics, repeat
Steps 2 and 3.
To draw a box around the graphics output in the
CRT, add following Step 1:
Type FRAME
Press EXECUTE
7. lyou want to create larger letters, insert before Step
3:
Type CSIZE 6
Press EXECUTE
Go to Step 2.
8. If you want to letter vertically, at a 90 degree angle,
insert before Step 3:
Type DEG
Press EXECUTE
Type LDIR 90
Press EXECUTE
Go to Step 2.

You can also use this capability to add your own text to
any completed plot when the output remains in the CRT.
Simply begin at Step 2, not Step 1. Step 1 erases the previ-
ously stored graphics output.

The CSIZE statement specifies character size as a per-
centage of the height of the CRT. The standard is CSIZE
3.3; with CSIZE 10 the characters are 10 percent of the CRT
height.

The LDIR statement specifies rotation of the lettering as
a counterclockwise angle from the horizontal. The standard
is LDIR O; with LDIR 180 the lettering would be upside
down if the DEG (degrees) statement has been executed.

o o w

Minimize File Access Time

by Albert Brunsting, Ph.D., Solar Spectrum, Inc.,
Miramar, Florida U.S.A.

Minimizng file access time on a tape requires that the
more frequently used files are located close to the tape’s
directory. As the tape is updated using HP’s convenient
file-by-name feature, some of the infrequently used files are
relocated close to the directory. This set of file locations
increases the average file access time, increases tape wear
and reduces efficiency.

The following method minimizes these problems. After
the tape is close to final form so that future updates and
improvements on any one file are likely to be minor, rank
the files according to the frequency of their use in the follow-
ing manner: Let the files be named Al, A2, A3, ... and B1,
B2, B3, ... where Al and B1 are the most frequently used
files, A2 and B2 are the next most frequently used files, and
so forth.

Now place Al, A2, A3, . . . in the address locations
0-425 with enough space between them to allow for minor
updates and improvementss. Likewise place B1, B2, B3, . ..
in the address locations 426-852 with space between them.
This can be done with a 5-record space between the files, for
example, using the following technique:

1. Put the tape containing the current mixture of files,
not in their optimum locations, in T14.

Put an initialized tape in T15, ready to record.

Enter: COPY “Al:T14” TO “Al1” (EXEC).

Enter: CREATE “SKIP1”, 5 (EXEC).

Repeat steps 3 and 4 for the files A2, SKIP2, A3,

SKIP3, . ..

Say the last A file of length n (256 bytes/record) is

located at address m. Enter: CREATE “SKIP”,

425-m-n (EXEC). Now enter: CREATE “BLOCK”,

1 (EXEC). This puts the data file BLOCK with just

one record, at address 425. No files can now span

the address locations 425-426, causing tape wear
and loss of time because the tape drive moves the
tape from one end to the other going from 425 to

426,

7. Now start on the second track with the B files at
location 426. Enter: COPY “B1:T14” TO “B1”
(EXEC).

8. Enter: CREATE “JUMP1",5 (EXEC).

9. Repeat steps 7 and 8 for B2, JUMP2, B3, JUMP3, .

o RN

10. Purge the files SKIP1, SKIPZ2, . . . and JUMPI1,
JUMP2, . ..
The repeat steps of 5, 9 and 10 are efficiently executed
with the convenient RECALL key.
Now the files are in time-saving locations and have
enough empty, adjacent records for minor updates using the
HP file-by-name feature.

9835/9845 1-1

Label Centering

by Brad Miller, Hewlett-Packard Company, Desktop
Computer Division

The LORG statement in the System 45 is a very power-
ful tool for lettering graphic output. However, several ques-
tions have come up when using LORG 5 (label centering).
Labels do not appear to be centered! This is not because of
problems with LORG 5 but rather because of the charac-
teristics of the LABEL statement. The LLABEL works like
PRINT in that it puts literals (text) into 20-character fields.
Therefore, LABEL “123456789012345” will be sent with 5
leading blanks and consequently not appear centered. The
solution (as with PRINT) is LABEL “123456789012345"";
the ; causes the literal to be sent “as is”’ and it will then
appear centered! Happy labeling!

<]
Better Label Centering
by Carl Johan Lamm, Lund, Sweden

I am sorry to say that Label Centering on the HP System
45 should not be done the way proposed in Keyboard
1978/3. Ending a LABEL statement with a semicolon will
cause the field to be buffered (as well as being output).
Filling the buffer will ultimately lead to a linefeed being out-
put, as is seen by running the following program.

It is good practice always to use formatted output with
LABEL. Change line 60 to LABEL USING “K”;
1234567890 and the program will run nicely.

READ DATA Error Recovery

by Bonnie Dykes, Hewlett-Packard Company, Desktop
Computer Division

Sometimes, because of extreme use of a mass storage
medium or adverse environmental conditions, the contents
of a particular file may become “lost.” That is, the desktop
computer cannot successfully read a particular area on a
tape cartridge or disc.

This READ DATA error recovery program recovers most
of a “lost” file by trapping the READ DATA error and
bypassing the unreadable portion of the storage medium.

The recovered data or program is recorded onto a stor-
age medium specified by the user. The program is usable
only on data files that have been SAVEd rather than
STOREd.

1-2 9835/9845

Dynamic File Allocation
System 35A/45A/45B

by Donna Kimble, Hewlett-Packard Company, Desktop
Computer Division

In designing a systern, there are times when the abso-
lutes inherent in the language of the computer conflict with
the changing reality of our problem. One such case is when
we really don’t know within, say, 10%, the amount of data
storage space that will ultimately be needed for our applica-
tion. Once a file is created with the CREATE statement, its
size cannot be changed.

Let’s say we’re working with a mailing list for a new
newsletter. If the newsletter is very successful, we might
eventually need to keep track of 1000 names and addresses.
If that happens, we would be happy to invest in storage
space for the names, of course, but then it is also possible
that the mailing list might not grow very soon. We don’t
want to permanently allocate space which may never be
needed, nor do we want to permanently restrict the file size
at the start of our system design.

In any application, we can choose a somewhat arbitrary
space increment. Let’s say for our mailing list we decide to
increase the file size by 50 records at a time. When the first
space of 50 records is full and we try to add the 51st entry,
the program will automatically set up a second space of 50
records. Further, since our file is named “MAIL” | we will
identify the individual subsets of “MAIL” as “MAIL1",
“MAIL2”, “MAIL3”, efc.

The following program lines show the technique re-
quired to numerically assign the names for five files.

FOR Subset =1 TO 5
CREATE “MAIL”&VALS$ (Subset),50
NEXT Subset

The result of the above program would be “MAIL1",
“MAIL2”, “MAIL3”, “MAIL4” and “MAIL5” created on
the mass storage tape or disc. Later, we’ll see how these files
can be allocated as needed.

In a system, we would want to be able to check and see
if the file already existed before creating it. The following
program lines show the use of the ASSIGN statement return
variable for checking to see if the file already exists. If the
value of the return variable is 1, the file does not exist.

ASSIGN #1 TO “MAIL”&VALS$ (Subset), Checkword
IF Checkword = 1 THEN Nofile

Whern we print into a file, if there is no more space, we
want to allocate more space. But if we are reading from the
file, we need to have some way to determine, when we
reach the end of a file, whether there are more file subsets or
not. The following program lines determine whether a new
file subset should be created depending upon a preset flag
called Mode$.

IF Mode$ = “READ”” THEN Finished
IF Mode$ = “PRINT” THEN CREATE
“MAIL”&VALS$ (Subset),50

Whether reading from the file or printing in the file, when
an end of file condition is detected, we want to return to the
portion of the program where a new file is allocated. The
following program line guarantees return to the Allocate
subroutine whenever an end condition is detected.

ON END #1 GOSUB Allocate

In the following program, we allocate the first file subset
at the beginning of the print routine and again at the begin-
ning of the read routine. Part of the procedure for file alloca-
tion is to establish a return to file allocation when the end of
file is detected.

This program allows keyboard entry of any number of
data items, and then prints these entries from the file when
data entry is complete. Of course, in actual applications,
there will be other steps such as updating the file and sorting
the records which are not shown here.

9835/9845 1-3

MAT SORT & MAT SEARCH
System 35A/35B/45B

by Stephen M. Taylor, Hewlett-Packard Company,
Desktop Computer Division

This programming tip tells how to use the MAT SORT
and MAT SEARCH statements on mixed uppercase and
lowercase strings and produce results as if all the characters
were in the same case.

When doing comparisons on character strings where
case is not a concern, the normal procedure is to use the
UPCS$ function, e.g., UPC$(A$) <UPC$(B$). However,
when using the MAT SORT or MAT SEARCH statements
defined by the System 35 or System 45 Advanced Pro-
gramming ROM, this technique is not available. One could
use a FOR/NEXT loop to go through and UPC$ all the
strings in the array to be sorted or searched, but that would
sacrifice the original form of the data.

Let’s say, for example, that you have typed in data for a
list of names that included ADAMS, WOTTEN, MACMA-
HON, ZHUKOV, and GREENOUGH. A short time later,
another person adds names that include Thomas, Galerius,
Cowley, Seward, MacKaye and Machiavelli. You typed
names entirely in uppercase letters, while the second person
added names with initial uppercase letters.

This is not a problem with a short list, as you can change
them with little difficulty. However, if there are hundreds of
names added to the list, it can be a problem if you try to sort
them alphabetically. With a standard sort of the names
above, they would print out:

The reason for this is that uppercase letters appear be-
fore lowercase in the ASCII character set, and receive prior-
ity. Even if both of you type with initial uppercase letters, the
names MacKaye and MacMahon would apear before
Machiavelli in a simple sort, because of the uppercase letters
in the names.

The solution to this problem is to use the LEXICAL
ORDER IS statement with an appropriately modified lexical
order table, one in which the upper and lowercase letters
have the same sequence numbers. The first program given
below will create such a table from the ‘ASCII’ table on the
cassette that comes with the Advanced Programming ROM.
The second program shows how to set up the LEXICAL
ORDER from that table. The third program, with output,
shows the results of doing a MAT SORT with this LEXICAL
ORDER.

14 9835/9845

Create Table

You should note that with languages other than English,
the integer table (Create table, line 20} would have to be
larger. Designing the program to operate correctly would

require referring to the Advanced Programming ROM
manual.

Set Up LEXICAL ORDER

MAT SORT With LEXICAL ORDER

Here we’ll insert our quasi data base to demonstrate that
the MAT SORT with this LEXICAL ORDER will disregard
the case of the letters and print out the names in alphabetical
order, preserving their original form.

Transferring Data From
9830 to System 45

by Martin Nielsen, Hewlett-Packard Company, Desktop
Computer Division

The 9830/31 to System 45 Translator package, part
number 11141-10090, transfers only programs, no data.
However, it is fairly simple to write a program to transfer a
specific data format, providing you know a few simple
things:

1. You need to have an [/O ROM (or binary) for the
System 45.

2. You need the 98032 Opt. 30 cable for transfer from
the 9830 to the System 45.

3. Forinput to the System 45, you must use the follow-

ing sequence prior to any actual data transfer:

S = <select code of cable (usually 12)>
CONTROL MASK S;1
WRITE 10 S,5;1

If you want to transfer data from the System 45 to
the 9830, use CONTROL MASK S; 0 and
WRITE 10 S,5;0.

4. Read your data into the 9830 from the tape (or disc,
or paper tape, or wherever it’s stored).

5. Wirite the data from the 9830 to the interface cable
as though it were a printer:
R = <select code of cable (usually 1)>
WRITE (R, *) <data list>

6. On the System 45, use an ENTER statement whose
data list matches the output from the 9830.

For the 9830 example:

Line 30 reads the data from the tape cassette into
memory.

Lines 40 through 70 send the data across the cable to
the System 45.

For the System 45 example:

Lines 30 through 50 mark enough files to hold the data.

Lines 60 through 80 configure the interface for input to
the System 45,

Lines 90 through 150 accept the data from the 9830 and
print it on the tape drive.

Press RUN, EXECUTE on the 9830, and press RUN on
the System 45. The System 45 will mark 51 tape files (O
through 50) and then will start accepting data from the
9830. The 9830 will be forced to wait at line 40 until the
System 45 executes line 110.

To transfer data from the System 45 to the 9830, change
the CONTROL MASK S; 1 in line 70 of the System 45
listing to CONTROL MASK S;0. Also change line 80 to read
WRITE IO S,5;0. Then change all the ENTERSs in the Sys-
tem 45 program to OUTPUTs, and change all the OUT-
PUTs in the 9830 program to ENTERs. Also change the
sections accessing the tapes accordingly.

Example: 9830

Example: System 45

9835/9845 1-5

Character Slant in a
System 45A/9872 System

by Rita Wigglesworth, Hewlett-Packard Company,
Desktop Computer Division

Characters drawn via the LABEL, LABEL USING or
LETTER statements are defined within the System 45A
Graphics ROM and cannot be slanted. To slant characters,
use the 9872A as a printer and send HPGL slant and label
instructions. An example is shown below. Use FIXED 4 for-
mat to send the tangent of the slant angle. If the tangent is so
large as to require scientific notation, the plotter will generate
an error when it encounters the “E”. For reasonable slant
angles, this problem should not occur.

To produce the “Ey” character, press the CONTROL
key and the leter “C” at the same time.

This program is not needed for the System 45B because
the slant function is included in the 45B Graphics ROM.

Continuous Plots Using
System 45A/B Graphics

by Donna Kimble, Hewlett-Packard Company, Desktop
Computer Division

In applications where strip chart recorders have been
used in the past, sophisticated outputs can be obtained using
the System 45. To combine the power of the System 45 and
its graphics capability with the familiar strip printer output,
we can use the commands available in the System 45
Graphics ROM.

If [can present to you a sine curve, plotted continuously
on the CRT and dumped to the internal printer, can you
translate the technique to your own data? And can you add
the labeling which you need?

As | asked these questions of my students who needed
this kind of solution, I got an unqualified “yes” in response.

In writing this program, I used variables at lines 20, 30
and 40 so that you could see the interrelationships involved
more easily, and so you could also plug in different values to
be sure the basic concept works in a variety of cases. Ini-
tially, we will plot the number of cycles of the sine wave
(Count = 3), where one cycle is 360 degrees (Cycle = 360).

We will dump the partial plot to the printer after each
specified interval (Interval = 15 degrees). You could dump
more often, say, after each 5 degrees, or less often, say, after
each 180 degrees. The program listed on this page plots
SIN(X)/X in a continuous form.

For a continuous plot, we need to visualize a transposed
picture. The X-axis is normally assigned to the horizontal
component with the Y-axis on the vertical. The origin of a
plot (0,0) is normally in the lower left corner of the CRT.

We will want to use the width of the paper output to
represent the Y-axis, and the length of the paper output to
represent the X-axis. This effectively rotates our picture 90

1-6 9835/9845

degrees so that the origin {0,0) can be in the upper left
corner of the CRT. The SCALE statement at line 70 pre-
sents the CRT area not only rotated clockwise by 90 de-
grees, but with our new Y-axis scaled to meet the needs of
the problem, where Ymin = —1 and Ymax = +1.

Once we have plotted a section of our picture to the
CRT, the DUMPGRAPHICS statement at line 130 allows us
to copy the picture onto the printer. This statement also
allows us to vary the amount of information copied to the
printer depending upon the portion of the CRT actually
used for the plot.

As we exceed the scaling for our next X-axis, we
effectively offset our X-values to fit the original scaling by
using the MOD function at line 100. For example, at 16
degrees we can correct our data to plot at 1 degree; 17
degrees corrects to plot at 2 degrees and so on. We reverse
the XY coordinates in our PLOT statement at line 100
because the dependent variable, normally the Y-value,
moves with the width of the CRT, which is normally thought
of as the X coordinate.

Normal plot on CRT Continuous plot on CRT

Normal
DUMPGRAPHICS

Continuous
DUMPGRAPHICS

9862 BASIC Language Drivers

by Dave Page, Hewlett-Packard Company, Desktop
Computer Division

In answer to a number of requests, a set of BASIC lan-
guage drivers has been written by Pierre Daubine of HP to
allow using the 9862A with a System 45 or 35.

The drivers are simply a set of BASIC subprograms that
can be appended to your main program and used with
CALL statements. The only big drawback is that they don’t
label.

Here are the available subprograms:

CALL Scale (Xmin, Xmax, Ymin, Ymax)

CALL Penup

CALL Plot (X,Y,P) (P has the same meaning as in the Sys-
tem 45 graphics ROM)

CALL Move (X, Y)

CALL Draw (X, Y)

CALL Xax (Yvalue, Xticspacing, Xstart, Xend)

CALL Yax (Xvalue, Yticspacing, Ystart, Yend)

To use these subprograms, you must reverse the first six
numbers in COMMON for use by the subprograms:
COM (Xmin, Xmax, Ymin, Ymax, Scalex, Scaley)

It is not necessary to set these numbers in the main
program; the Scale subprogram handles that. It is necessary
to declare the COMMON area in the main program, and
furthermore, if there are other things in COMMON, these six
must be the first ones.

. Computer
= Museum

9835/9845 1-7

1-8 9835/9845

Section 2

9830

Index
Section 2 - 9830

Random Number Generation i, 2-1
Random Number Generation 2-1
A Tip On Faulty Cassette Tapesoutinniit i 2-1
On the Efficiency of the POS Function 22
Reading 5-Hole Telex Tapet 2-2
Conserving Core MemoOryottt 22
Calculations During Input 2-3
S.F. Key Programs Used in Program i, 2-3
Eliminating RND Predictability i 2-3
Sorting and Pairing Numbers i i 2-3
Obtaining Non-Keyboard Characters coiiiiiiiiinn. 24
Obscure Uses of the RES Registercciiiiiiiin i, 24
Outputting Non-Keyboard Characterso i i .. 24
Null String Entry 2-5
Use of Dummy Variables to Control Programs fromthe 9864A 2-6
String Variables 2-6
Available Memory 2-6
More on Available Memory 27
A “Keyboard Interrupt” 2-7
Interrupt System 2-7
A Method of Inputting Variables i e 2-8
WAIT Within a DISPLAY e 2-8
Monetary Formatting 2-8
Quick XREF .. 28
ARCTGinthe 0°t0360° Rangeoviuiuiii e, 29
Storing AlphaonaDataTape i 29
Synchronization Between Timeshare and the 9830A 29
Right Justifying Input Strings 2-10
String CompPariSonsottt e 2-10
Using the Special Function Keys to RepresentData 2-10
Single-Line Cross Reference i, 2-11
Calculations During Program Execution 2-11
Increasing Storage Capacityoo ittt 2-12
Speeding Cassette Tape Access Time i, 2-12
Recoverable Exrror 59s 2-13
Speeding Execution Time 2-13
Signalingthe Endof aProgram 2-14
Aligning Printed Headings i 2-14
Transferring Program Files Between Two Mass Memory Units 2-14
Avoiding VAL Function Errors 2-15
Inputting Varying Quantities of Numbers i i, 2-15
Converting FORTRAN Programsooiiii i 2-16
Salvaging a Program with ERRORS59 (9830A) i 2-17
WRITE and FORMAT Incorporating Variable Length Strings 2-18
WRITE and FORMAT Incorporating Variable Length Strings 2-18
FORMATtingthe Display i 2-18
Transferring Values 2-18
Determining the Centroid of aFigure 2-19
Implementing a Binary Switch 2-19

A Structured Approach To Program Overlays 2-20

Random Number Generation

by Philip Dawdy, Lansing Community College, Lansing,
Michigan

I have discovered a technique for ‘‘continual randomiza-
tion” of random numbers generated from the 9830. Nor-
mally, the 9830 will generate a sequence of random num-
bers (via the RND(0) function) from a calculated seed
(2—m/2) or another seed if specified by the user.

When programs are run, they are initialized before
execution. This initializing process causes the random se-
quence to begin from the 9830’s seed unless the program
changes the seed. If the program uses the 9830’s seed, or
changes it using the same negative number within the
parentheses of the function, the sequence will be the same
every time the program is run.

The following method eliminates any need for an extra
dummy entry and automatically generates a new sequence
of random numbers each time the program is restarted. The
only way the same sequence will result is from calculator
tum-on restarts. When the calculator is first tumed on, the
sequence will begin at the same point, but each time the
program is rerun a new sequence begins.

Lead the program with the following statement:

20 DISP RND(-0.12374536789-ABSRES 0.01)
or
20 DISP TAB32;RND(...

The above statement generates a seed for the random
sequence and produces a new seed when the program is
rerun. The reason is that the seed is calculated from the
RESULT register, and it is the only register in the 9830 that
is not made undefined when the program is initialized. In
fact, the RESULT register is unaltered except during
keyboard calculations and when SCRATCHA is executed. .
Another most unusual situation where RESULT is altered is
in programs. Since the 9830 will not allow, for example, 30
RES = 5 x A, was forced to find another method for storing
values in RESULT via the program.

Experimentation told me that printing or displaying val-
ues are all stored in RESULT. The reason for the display of
the random seed in the above statement should be clear to
you now. RESULT will contain a different value each time
the program is executed. If the calculator is used for
keyboard calculations between runs, this alters the random
sequence also, since the seed is then altered (another form
of randomization).

To assure that RESULT does not contain a number from
a print or display statement, a final random number is gen-
erated at the end of the program and placed in RESULT.
The following statement should be placed before the pro-
gram END (or STOP):

190 DISP RNDOQ
200 END

or
190 DISP TAB32;RNDO
200 END

To keep the program from starting with the same se-
quence every time the program is first loaded into memory,
the user can do an arbitrary calculation prior to running the
program (or just key in any random number and press

EXECUTE).

Random Number Generation

by Professor Stanley Deming, University of Houston,
Houston, Texas

I enjoyed the tip on random number generation on the
9830A by Philip Dawdy in Vol. 8, No. 1. Qur laboratory
makes use of randomized experimental designs and has a
need for generating different variable-size sets of random
numbers.

The program below generates a randomized set of a
given number of values. The only major change in the origi-
nal method of generating random numbers is to test for
RES=0. Ifitis true, the program prompts the operator to
supply a different seed.

A Tip On Faulty Cassette Tapes
by lan Collier, Hewlett-Packard, Melbourne, Australia

If a tape becomes unusable because of an oxide fault
quite close to the start of it, then careful disassembling, turn-
ing the tape over and reassembling will make the majority of
the tape usable again without having any differences dis-
cernible to the operator.

9830 2-1

On the Efficiency of the POS Function

by Donna Kimble, Desktop Computer Division,
Heuwlett-Packard

Is September the ninth month? That question may sur-
prise some people, because it seems universal that January
is the first month, February the second, and so on. But the
answer depends on who you ask. In the context of the fiscal
year, September might be the third month or the eleventh
month.

I came across a problem of this type recently, and |
thought at the time that my solution was routine. But, being
a fairly avid reader of other people’s programs, I came ac-
ross three lines buried in the middle of one program which
put the entire situation in a new light. Here are those lines:
120FORP =1TO 10
130 IF C$(P,P) = A$(1,1) THEN 180
140 NEXT P
To make this situation a little clearer, 1 will quote other por-
tions of the same program. 50 C$ = “0123456789’’ estab-
lished ahead of this section a set of allowable numeric digits.
And 180V = VAL(A$) comes after.

A certain string, called A$, contains unknown data. The
above section of the program was designed to avoid a non-
numeric argument during conversion of the string to a
numeric type data.

Consider the following line:

120 IF POS (C$,A$(1,1)) THEN 180

[believe this alternative line can replace the three lines
previously used with no change in the function of the prog-
ram except for a significant improvement in speed, as well as
an improvement in the amount of memory used by the
program,

All this brings me to that problem I had recently, in which
there was quite a bit of confusion possible in referring to
months by number. It seemed to me to be too risky in
matters pertaining to dollars to arbitrarily decide that the
user of my program should change his ways to conform to
my standard. And no matter whether I decided to call
January or November month one, I would be making such a
demand on at least some of the managers in my
department.

Using the String Variables ROM, | allowed instead that
the answer to the questions pertaining to months could be
the month name. In the program I could then with a clear
conscience use whatever month number to refer to the
month that [chose by using the POS function.

Because I had to include this facility in a number of
programs, | have “‘optimized” it. You may find that with litfle
modification it can be incorporated into your own programs.
Here it is:

HODEC JRHFEEMF

This program is optimized so that it requires only one
string and takes the least amount of memory possible for
variable storage. Also, it includes some protection against
ambiguous answers from the keyboard. If a month is not
recognized, the question is repeated.

2-2 9830

It would have taken an incredible number of program-
ming steps to accomplish this translation from month by
name to month by number if the approach had been similar
to that taken in the three lines at the beginning — but I have
seen this done.

Just for fun, it would be interesting to see by how many
steps the program could be expanded if Line 50 were re-
placed by some group of statements including a FOR and
NEXT loop. Just for fun, of course.

L RN
Reading 5-Hole Telex Tape
by Lloyd Stott, Hewlett-Packard, Melbourne, Australia

This short program enables the 9830 to read 5-hole
telex tape. Equipment required is the HP 9863A Paper Tape
Reader, HP 11272B Extended I/O ROM, and HP 11274B
String Variables ROM. Decimal equivalent codes for each
shift mode can be worked out from Lines 30 and 40, where
“T” and “‘5” are 1 in each case (not 2). Shift mode change
characters are not included in the line or output (hence,
Lines 160 and 190 to restore the actual character count).
Line 70 logically ends a byte from tape with the expected 5
bits (3110 = 378 = 111112). I.e., the unwanted 3 holes of the
8-hole system are masked out. One is added to the masked
character to give X.

Conserving Core Memory

by 1st Lt. Richard Virost, U.S. Air Force Environmental
Health Laboratory, Kelly Air Force Base, Texas

[have found the following algorithm useful in conserving
core memory when using large arrays in which each element
is positve and has only four significant digits at most. The
algorithm permits storage of such numbers in an integer
array rather than a split or full precision array. The range of
numbers that can be stored using this algorithm is
1x10N<X<1x10%*° where N is any integer — positive,
negative, or zero — so that decimal numbers can also be
stored in the integer array. To store X, use these steps:

o AT R RN

X is now stored in a coded form in G{1).
To recover X, use these steps:

TG0
~11%(iE

(i wnl
A A

Calculations During Input
by A. de Faro Barros, GESPO, Porto, Portugal

For making some calculations during any input step
without losing the trail of the program, I suggest the follow-
ing routine:

AR
RN

[P
D N Y R
(xR

fan
ol

The input of a special number (e.g. 9999) throws the
machine into calculation mode, returning to the same dis-
play line when required.

For not losing the results of your calculations and to keep
a record of it, as soon as you enter into STOP (line 2020),
press PRINT ALL {on), make your calculations, again press
PRINT ALL (off), CONT, and EXECUTE. You now can
contine programming.

L]
S.F. Key Programs Used in Program
by K.S. Wilkinson, Wellington, New Zealand

To use Special Function key programs — defined by
Math Pac or other cassettes — in programs rather than
manually, firstload the keys from the cassette, then store the
required key programs one at a time in separate files on
another tape {HP 9830A Operating and Programming
manual, p. 6-7). Load the separately filed programs into the
main memory in sequence, chaining them together. Replace
the END statements with RETURN, and call the programs as
subroutines. (Subroutines rather than functions must be
used to pass several variables back to a mainline program.)

Eliminating RND Predictability

by Robert Campanini of BHP, Central Research
Laboratories, Shortland, Australia

Each time the same seed is set into the random number
generator (as is the case when the calculator is switched on
or RUN is executed), the sequence of numbers which fol-
lows from the function RND is the same.

In applications which require new sequences of numbers
each time a program is run {e.g., in generating systems of n
random points in two dimensions), the following technique
has been found useful:

1. To one of the SPECIAL FUNCTIONS keys of the
program the following statements are assigned:

10R = RNDO
20 R = RND (-R)
30 GOTO 20

Program variables are initialized by pressing RUN
and appropriate SPECIAL. FUNCTIONS key.

The SPECIAL FUNCTIONS key containing the
statements in (1) is pressed.

After an arbitrary length of time the STOP button is
pressed.

The body of the program is executed via the relev-
ant SPECIAL FUNCTIONS keys.

o~ w N

The advantage of this technique is that it is parameter
free, i.e., the sequence of random numbers produced is not
determined by any input parameter.

C __J
Sorting and Pairing Numbers

by Andrew Zinn, Scott Wulfe, and Jack Ligon, Robert E.
Lee High School, San Antonio, Texas

We have an idea for sorting four-digit numbers on the
9830 and, if desired, pairing them with alphanumeric data.
This could be used in class ranking programs, for example.

First, all data must be in a similar range; i.e., between 0
and 1, 1 and 10, etc. Next, using the first four significant
digits, enter the data element as a line number (3.459 would
be entered as Line 3459). Type in some dummy statement
{the program will never be run, so the statement sould be as
short as possible to conserve memory), or, if alphanumeric
data is to be sorted, the following statement, for example,

would suffice:
2459 A$ = “JANE SMITH”

Press END OF LINE and continue entering data in this
fashion. When all data are entered, merely LIST the pro-
gram lines to print out the data elements in order from least
to greatest. If alphanumeric data are induded, executing
REN 1, 1 will produce a listing of the data, in order from
least to greatest, with the first line being 1 and all lines con-
secutive integers, when LIST is executed.

9830 2-3

Obtaining Non-Keyboard Characters

by Robert J. Rahmann, Goonyella Mine, Queensland,
Australia

Non-keyboard characters can be placed on Special
Function keys of the 9830A very simply if you have an
external plotter ROM. Even without the ROM square
brackets can be entered. First ensure the ROM is in the
central slot of the five ROM slots, then proceed as follows:

* Fetch a Special Function key — FETCH Fo
* Type in a legal array statement — 1A (1,1) = 1
® Press END OF LINE and | (display viewing key)
¢ Edit the display 1A (1,1) = 1 to *(or *) and press END OF
LINE.

For the rest of the characters, begin as above or use the

brackets placed on the keys to enter, while in key mode,
(95,1)—-1

The characters outside the brackets are unimportant.
The first number inside the brackets is the ASCII code for
the symbol required; 95 is the code for an underscore.

Press: EXECUTE

Press: RECALL

The display should read: (95,1) 1
Edit to place *+ on the key.

The non-keyboard characters, including line feeds, etc.,
can now be incdluded in WRITE, PRINT, and FORMAT
statements. Code 162 produces a quote on the display and
the 9866A printer, but it does not terminate the quote field
of a print statement or string variable assignment. In some
programs, use can be made of the fact that the operator
cannot normally enter these characters. They can be used,

for instance, to separate substrings of keyboatd characters

within a string.
D

Obscure Uses of the RES Register

by William Zehner, Seascope Electronics, Lynn Haven,
Florida

The thrifty 3-line program below causes the 9830A to
display a running balance for use in balancing your
checkbook, etc.

10 INPUT A
20 DISP A + RES;
30 GOTO 10

Its operation may not be obvious. The register called
RES always contains the last number displayed or printed.
Hence, line 20 is really equivalent to two operations that
accomplish the running summation DISP A + RES; RES =
(RES + A).

If you are short of variable names or memory, you can
use the RES register for temporary storage. For example, to
interchange the values of two variables without the use of a
third temporary variable,

10INPUT AB
20 DISP A
30A=B
40B = RES
50 GOTO 10

(saves A in RES)

24 9830

Another interesting use for the RES register is to pass a
number from one program to another through a LOAD (file)
operation. Unlike other varables, the value in RES is not
altered by RUN, LOAD, INITIALIZE, SCRATCH,
SCRATCHK, or SCRATCHV. lt is only altered by
SCRATCHA or by turning the machine off and on (both of
which initialize RES to 0), or by any operation resulting in a
number being displayed, printed or sent to a peripheral de-
vice. Hence, to pass the value of a variable, say X, from

program A to program B, the last lines executed in program
A should be

990 DISP X (saves X in RES)
1000 LOAD 22, 10

and the first line in program B should be

10 X = RES {replaces RES into X)

Incidentally, [wish to thank Mr. Rahmann for his ingeni-
ous KEYBOARD tip on obtaining non-keyboard characters.
[found it very useful in writing ALGOL programs in TEXT
mode, because of the frequent need for square brackets []
and the \, which is used for multiplication.

Outputting Non-Keyboard Characters

by Dennis Eagle, Hewlett-Packard, Desktop Computer
Division

There are times when it is desirable to be able to output
characters which are not on the keyboard. For example, you
might like to print 80 underscores across a page. If you had
the underscore character, the problem could be solved by

using a format statement in the following manner:

10 WRITE (15,20)
20 FORMAT 80—

Unfortunately, there is no underscore on the 9830A’s
keyboard. There is also no \, [,], line feed, or typewriter
operations such as tab, backspace, etc. on the keyboard.

If you have a 9880 Mass Memory System, you can ob-
tain the underscore and other non-keyboard characters as
follows. First, execute the following instructions.

PRESS: FETCH
PRESS: fo

TYPE: 1 DEF FNA (X)
PRESS: END OF LINE
TYPE: 2 STOP
PRESS: END OF LINE
END

Noohrwh -

Execute instructions 1 through 7 again, except that in
instruction 2, press f1. Execute instructions 1 through 7 for fz,
f3, and so on up to fo. Be sure that the two lines of program-
ming are stored in every key. Next, key in the following
program;

TYPE: SAVE KEY “CHARKY”

PRESS: EXECUTE

TYPE: OPEN “XXX’,1

PRESS: EXECUTE

TYPE: SAVE “CHAR”

PRESS: EXECUTE

PRESS: RUN

PRESS: EXECUTE

ASCII CODE? will be displayed.

ENTER: 10

PRESS: EXECUTE

ASCII CODE? will again be displayed.

ENTER: 95

PRESS: EXECUTE

ASCII CODE? will be displayed. This time, terminate the
program by entering 999.

ENTER: 999

PRESS: EXECUTE

The Mass Memory will make a few ““clicking’’ sounds.

10 and 95 are the ASCII codes for line feed and underscore.

If you press fo three times, I F + will be displayed. Although
the character is displayed as a F, it will print as an under-
score. Now whenever you want an underscore, you can
press fo.

TYPE: PRINT “ABC

PRESS: fo

TYPE: DEF”

PRINT: “ABCFDEF” will be in the display.
PRESS: EXECUTE

ABC__DEF will be printed.

As another example,

TYPE: 1 FORMAT 5¢“*+” “TEST” 5+ +”
(using the fo key for F)

PRESS: END OF LINE

TYPE: WRITE (15,1)

PRESS: EXECUTE

Your printout should look like this:

You can now type line feeds whenever you like. If you
press fs, J will be displayed. However, if the character is
within a print or write statement, it will cause a line feed for
the thermal printer or an index on the typewriter.

TYPE: PRINT “ABCJDEF” (using the fs key for J)
PRESS: EXECUTE

ABC
DEF will be printed on the thermal printer.

ABC
DEF will be printed on the typewriter.

Pages F-6 and F-7 of the 9830A Operating and
Programming Manual give all the ASCII codes and their
corresponding outputs. The keyboard characters which can
be stored are those with the following ASCII codes: 0
through 10, 12, 14 through 31, 91 through 96, and 123
through 127.

The CHAR program above permits you to enter up to
ten of these characters into the keys. For less than ten
characters, terminate by entering 999,

The characters are stored in the following sequence:
fs, fo, f1, f2, f3, fa, f6, f7, fs, fo.

Null String Entry

by Dennis Eagle, Hewlett-Packard, Desktop Computer
Division
If you have an HP 9830A with the strings ROM, there

are times when in the Program mode, you would like to
input a null or empty string. For example,

To input a null string, enter a quotation mark (”’) and
press EXECUTE.

The BASIC compiler uses quotation marks as indicators
for the beginning and ending of strings, for example,
A$="ABC". If there are no characters between the quota-
tion marks (A$=" "), then the string is empty and its length
is zero.

9830 2-5

Use of Dummy Variables to Control
Programs from the 9864A

by Dr. P.A. Burrough, School of Geography, University
of New South Wales, Kensington, N.S.W., Australia

A common use of the digitizer is to measure lengths of
curved lines on maps or charts, etc. Usually this is program-

med in the form of a simple loop, with the digitizer in con-
tinuous mode:

There are disadvantages to this method. To print out the
result at the completion of the line, the continuous mode is
switched off, the program must be stopped and recom-
menced by CONT 80, EXECUTE to print the result. This is
time consuming and unnecessary, because by simple pro-
gramming, the digitizer can be made to control the cal-

culator. This is a great advantage if much digitizing is to be
done.

Consider the following program:

o

[N S I w B B S B0 A LK

The line is digitized in continuous mode. At the end the
continuous mode is switched off and a single double nega-
tive X, Y value is entered. This causes the line length, stored
in D, to be printed via statements 40 and 90. After this the
program returns to the beginning to measure the next line,
all without need for control via the 9830 keyboard.

By varying the nature of the IF-THEN conditions, a
whole range of controls over program operation may be
obtained using only data from the digitizer, thus providing
simple and flexible operation.

String Variables
by T.P. van der Zee, Eindhoven, The Netherlands

In many cases it is necessary to take the value of a string.
If the string is non-numeric, Error 76 will occur. A technique
has been developed to avoid this.

The first position in the string must always be declared as
0. The input must be given directly behind this position.
Then by taking the value of the total string, no error will
occur.

2-6 9830

Example

If B$ (2,10) = “125” then A = 125.
I B$ (2,10) = “ABC” then A = 0.

If it is necessary to repeat the request for input in the
second case (non-numeric argument), the next sequence
applies:

A RUN or INIT command erases the contents of the
strings. To check whether or not one of these commands

has been given, the following special test with the aid of T$ is
suggested.

As soon as H$ has been input, T$ (2,2) must be de-
clared 1. Because a RUN or INIT command will also erase
this information, the name is asked again after a RUN com-
mand. After STOP END CONT EXECUTE, the name will
be printed immediately. With the aid of this string, it is also
possible to check whether or not variables have been erased
by a RUN or INIT command.

.]
Available Memory
by Bob McCoy, Hewlett-Packard, Atlanta, Georgia

When the Model 30 memory has information in it and
you need to know how many words of memory are still
available, the Model 30 Operating and Programming Man-
ual gives a key sequence LIST 999 9 EXECUTE to display
this. A shorter and faster routine to get the same result is
LIST followed by pressing any Special Function key.

More on Available Memory

by Professor Danial G. Maeder, Versoix, Geneva,
Switzerland

Pressing LIST, any available Special Function key in-
stead of 9999 — is worth much more than the litfle note lets
one think. In fact, LIST, Special Function key, leaves the
main program counter unchanged, whereas, after the con-
ventional LIST 9999 one has to FETCH again the program
line on which one had worked last. For someone who made
it a habit to check the available memory after every program
line change, the possibility of continuing the editing on the
neighboring program lines without FETCH is very desirable.
It also helps to save paper if one edits a program in the PRT
ALL mode, by avoiding useless LIST and FETCH printing.

A “Keyboard Interrupt”
by Hewlett-Packard, Melbourne, Australia

Wouldn’tit be nice to hit a key on the 9830A and cause
aflagto be set? That is, to be able to change the course of a
program while it is running from the keyboard? It can be
done on the 9820A, 9821A, and 98254, but there is no key
to achieve this on the 9830A. Or is there?

If you have an 11272A Extended [/O ROM, try the
following:

* Type in the program (see below).

* Put any cassette into the transport and close the door.
Run the program. 999" will flash repeatedly.

Open the cassette door.

Enter a value manually in response to the display.
Until the door is closed again, the program remains in
manual mode.

Is Cassette Drive
Door open?
(cassette in

place)

No (‘Auto’ mode)

i

Set Value
Yes Automatically
(Manual
Mode)

{

Request Value from

Operator

Interrupt System

by David A. Ripley, General Dynamics, Albuquerque,
New Mexico

If you have written programs containing nested or
lengthy ‘DO loops” you probably know that there is no
interrupt system for the 9830A as such. For example, you
cannot alter your program flow any way short of stopping
the program, changing a statement, and continuing from
there. This forces the programmer to do one of two things:
either display each result or wait for termination, assuming
the loop is not “hung up.”

The following sample may be useful to you as it allows a
physical action on your part to cause branching. It uses the
STAT (status) command found on pp. 3 - 4 and A-3 of the
Extended I/0O ROM manual to allow for such interrupts, i.e.,
by opening or closing the tape transport door. Only one
command is needed to perform this function. See statement
120 of the example. Note that this statement assumes there
will be a tape inserted into the transport and ready (not on
clear leader). If the tape is on clear leader or if the transport
is empty, a different value will be returned with “STAT.”

Execution time can be drastically reduced for multiple
calculations by this method as compared to displaying or
printing each result.

Comparative Times

DISP Statement STAT Statement

100 items approx. 20 sec. 100 items approx. 2 sec.
The STAT statement can be used at any time to allow

branching by the simple IF statement. There are many other

applications for this statement, such as printing totals, etc.,

without terminating execution.

Example

9830 2-7

A Method of Inputting Variables
by A. de Faro Barros, GESPO, Porto, Portugal

Sometimes one needs to enter an array, many of whose
elements are zeros. Instead of the time-consuming

use

Monetary Formatting
by Bob McCoy, Hewlett-Packard, Atlanta, Georgia

When the output of your computation on the HP 9830A
is in monetary units such as dollars, it is convenient to have
the dollar sign preceding the figure, as well as having the
digits grouped in threes separated by commas, especially
when six or more digits appear to the left of the decimal. The
routine shown below will insert the dollar sign and commas
as required, according to the number of digits in the output.
The input must be a minimum of .XX, and the routine re-
quires the Extended /O ROM (or appropriate DEXP com-
mand on the Mass Memory) and the String Variables ROM.

Example

Continual digitation of 9 numbers can be partially
avoided by entering
~,0,0,0,0,0,0,0,0*

onto a Special Function Key (fo, for example). As an
illustration,

¢ The display shows: ‘‘Dependencies of 5?”

¢ You enter: 3, 4, 15, 33, 45

¢ Press: f9

Row 5 of the array now contains

3,4,15,33,45,0,0,0, 0.
D

WAIT Within a DISPLAY

by Andrew Vettel, Jr., Steel Valley School District,
Homestead, Pennsylvania

If a program contains a series of DISP statements fol-
lowed by WAIT statements, it is possible to place the WAIT
within the DISP as follows:

The multiple line function, FNW(X), is constructed to
take an argument that specifies the WAIT in seconds.

R

2-8 9830

N

Quick XREF

by Joe Armstrong, Hewlett-Packard, Desktop Computer
Division

When debugging programs, it is often necessary to find
the location of one or more variables (or even to see if a
variable exists) within a given program. The usual procedure
is to execute the XREF command found in the Advanced
Programming | ROM. A printed cross reference of all the
variables withing a program is printed. A significant amount
of time and printer paper can be used during the normal
debugging of a program using this standard XREF proce-
dure. To cross reference only the variables you are in-
terested in, simply define these variables in the first few lines

of the program. Suppose you are interested in the following
variables; A, B, C, D, A(10), A$. Simply key the following
lines into your program:

01 A=B=C=D=0
02 A{10)=0
03 A$=u ’

It is assumed that your mainline program starts at a line
number greater than 03, and there is no common statement.
Now execute the XREF command. The cross reference will
print out the locations of the variables in the order shown
above. After the cross reference is complete, press the STOP
key to terminate the XREF command. NOTE: Be sure to
delete the lines entered before saving your program.

ARCTG in the 0° to 360° Range

by Ing. Stanislav Milacek, State Res. Inst. for Machine
Design, Bechovice, Czechoslovakia

The phase of a complex number from X and Y compo-
nents in any range {e.q., 0 to =180 or 0 to 360 degrees) can
be calculated easily by the algorithm described in the sample
program shown below. Note that the ‘security’ coefficient k
= 1E-98 in Line 70 fits the Y/k value, which must be smaller
than the numeric range of the calculator.

Example

Storing Alpha on a Data Tape

by John E. Barber, Cook Coggin Engineers, Inc.,
Tupelo, Mississippi

This routine is used to store alpha on a data tape without
using an AP ROM. There are many ways to use this routine,
but the example shown below uses an external cassette and
stores the alpha in the first row of the array. With this
method, your data tape can be marked in equal size files so
it can be used to store more than one set of data. If all
storage is alpha, the precision should be changed to save
storage space.

Example

Synchronization Between
Timeshare and the 9830A

by Finn Hendil, Philips Elektronik Industri Ak/S,
Copenhagen S, Denmark

When the 9830A is used as a terminal for a remote
timesharing system having more than one fixed transmission
speed, the speed is sometimes indicated from the 9830A by
transmission of one specific character repeated several
times.

In the TERM mode of the 98304, the TRANSMIT func-
tion is terminated with a Carriage Return, which disturbs the
proper synchronization to the timesharing system, and as
there should be a time interval between the transmitted
characters, we have found that this little program on one of
the unused Special Function Keys gives a perfect synchroni-
zation each time:

After the 9830A is in the TERM mode, the procedure is
to press the key when the characters are to be transmitted
and proceed in the usual way.

9830 2-9

Right Justifying Input Strings
by Jordan Siedband, Harper College, Palatine, lllinois

The program given below will right justify input strings if
the output device for the 9830A is a 9871A Printer. Any line
width (M) could be specified. The one shown is 76 normal
characters in length, or 7.6 inches of text. If the number of
characters is less than 56 or (M-20), the machine does not
right justify. This permits ends of paragraphs or tabulated
data to print in their normal fashion. For finer line adjust-
ments, the 20 could be replaced by 12, for example, Lines
500 - 600 are intended as the printing sub and could be
used in any application when SO, M, and A$ are known.

]
String Comparisons

by Francois Martin, Tudor Engineering Company, Seat-
tle, Washington

When a “yes” or “no” reply is input in answer to a
program query and the reply is tested to determine program
branching, as in the line:

130 IF B$(1,1) = “Y” THEN 900

the user normally types in Y or YES without pressing the
SHIFT key.

This is the expected reply, resulting in a “true’” decision
in comparing the Y’s and proper branching to line 900,
provided the Y in quotation marks above was also pro-
grammed in the unshifted mode. However, if the program-
mer held the shift key down while typing the Y in line 130,
the test then compares Y (octal code 131) with y (octal code
171), so branching will not occur. The same difficulty occurs
if the programmed Y was entered in the unshifted mode and
the user inadvertently enters his reply in the shifted mode.

In all 9830A programs published by HP, alpha string
characters are entered in the unshifted mode. An alpha YES
reply in the unshifted mode then causes the expected pro-
gram action. Users should remember that although the dis-
play and the printed 9866A output look the same for either
shifted or unshifted letters, the calculator sees and compares
different octal codes.

2-10 9830

Using the Special Function Keys
to Represent Data
by R.J. Carter, CSIRO, Clayton, Victoria, Australia

The method of using the 9830A Calculator’s Special
Function Keys to store sets of data and then to input those
sets into a program as required is effective where:

* Some of several sets of data are required for each run;

¢ Sets of data are to be entered several times in each run;

¢ The same sets of data are entered in a different order for
each run; or

¢ Sets of data are to be entered manually.

The method increases in value if combinations of the
above are needed. In my case, the combination of all four
applications occurred, and a saving of just over 1000 words

in a 5100-word program was produced by the use of the
method.

Data Entry to Special Function Keys

To put data on a Special Function Key, first enter the
KEY mode by pressing the FETCH key then the desired fx
key. If no information is on the key, KEY appears on the
display. The data can be entered if an asterisk (*) is keyed in
first. Key in the data, separating each number by a comma;
then the key number, separating this from the data numbers
by a comma. Complete the entry by pressing the END OF
LINE key, which automatically exits the KEY mode. Press-
ing the FETCH and fx keys would now produce a display
such as:

*0.7796, —3.584, 5.6883, —2,862,
—2.3719, 12.1878, —4.0823, 1.3468, 8*

The key number (or an identifying string) is included so
that it may be later output as a check for the correctness of
input data.

Twenty such sets of data may be entered onto the Spe-
cial Function Keys and conveniently stored on the first file of
a program cassette by using the command STOREKEY 0.
Before each use of the program cassette, the data are re-
stored to the Special Functions Keys by the command
LOADKEY 0.

The method may be used even when there is already
information on the key, but all of the previously recorded
information is lost.

Data Entry to Mainline Program

The mainline program uses the following method of en-
tering data:

510 FORZ=1TOL

520 DISP “DATA & KEY: SUBSCRIPT”Z;
530 INPUT A[Z], B[Z], C[Z],...K[Z]

540 NEXT Z

Pressing the desired Special Function Key inputs the
required data and automatically restarts the program. Omit-
ting the second asterisk at entry of data to the keys allows
data to be viewed at run time. In this case, pressing the
Special Function Key inputs the required data and stops the
program. The program is restarted by pressing the EXE-
CUTE key.

Data may be entered manually if they have not been
previously stored.

Single-Line Cross Reference

by Dennis Eagle, Hewlett-Packard, Desktop Computer
Division

There are times when it is very useful to know where in a
program a given line is referenced. In the following example,

if you change Line 14 to 16, the program cannot be run
because Line 14 is referenced in Lines 10, 12 and 30.

E (15143

In a program of 1000 steps or more, it becomes very
difficult to see all the lines referencing a given line. The
following procedure permits a user to obtain a cross refer-
ence for a given line.

Change the line number of the line in question.
Type: 9999 GOTO 9998

Press: END OF LINE

Be certain that there is not a Line 9998.

Type: REN

Pres: EXECUTE

ERROR 44 IN LINE XXXX will be displayed, where
XXXX is a line number in your program. The line in
question in step 1, is referenced in Line XXXX.

6. Change Line XXXX so that it now references the

new line number established by 1.

7. Go back to 4. and continue to perform 4. through 6.
until ERROR 44 IN LINE 9999 is displayed

8. Type: DEL 9999
Press: EXECUTE

W =

o

As an exercise, key in the example program.
1. Change Line 14 to Line 16.

3. If there is no Line 9998,

4. Type: REN
Press: EXECUTE

5. ERROR 44 IN LINE 10 will be displayed
Type: 10 GOTO 16
Press: END OF LINE

Repeat 4 and ERROR 44 IN LINE 12 will be displayed.
Type: 12 GOTO X of 16,20
Press: END OF LINE

The program will now be listed as:

When 4 is repeated again, ERROR 44 IN LINE 30 will
be displayed. Change the reference in Line 30 from 14 to
16. Now when you attempt to renumber, ERROR 44 IN
LINE 9999 will be displayed. Line 9999 purposely refer-
ences a nonexistent line so that the program won’t actually
be renumbered. Delete Line 9999. All references to Line 16
have been found and changed.

Calculations During Program Execution

by Joe Armstrong, Hewlett-Packard, Desktop Computer
Division

During the execution of a program, it is often necessary
to make calculations to answer certain program-prompted
questions. You can use the HP 9830A to perform these
calculations by pressing either the up or down display keys
(1,4) when the 9830 is waiting for an input. This will put the

9830 in the calculator mode. You can now perform any
normal keyboard function.

Examples
1. To check the status of A: key in A and press
EXECUTE.
2. To calculate A*B/C: key in A*B/C and press
EXECUTE.
3. To change the status of D(1,5). Keyin D(1,5) = T*5
and press EXECUTE.

You can return to the input step where you exited the
program by pressing CONT and EXECUTE. The only dis-
advantage is that the original display message will be re-
placed by a ?. Simply remember what the message was and
enter the response as usual.

NOTE: Use the 9830 as a calculator only. Do not at-
tempt to edit, add, or delete any program lines during this
procedure. To do so would cause the 9830 to lose its pointer
to the step in memory where you exited the program.

9830 2-11

Increasing Storage Capacity
by Philippe Kent, Lausanne, Switzerland

A substantial amount of memory may be wasted when
storing large numbers of experimental results in full precision
arrays. The values are often of (rather low) constant relative
precision and/ or of small dynamic range. The use of split
precision arrays will double the storage capacity, but use of
the following procedure will double that capacity again. The
gain in access time, if the values are stored on the tape
cassette, is also considerable.

The trick is to use a signed, biased logarithm of suitable
base. The base and bias are chosen such that the log of the
maximum absolute value encountered is 32767 and the log
of the minimum absolute value is 1:

log (max|V|) + b = 32767,
log (min|V}) + b — 1, or

a = (max|V/min|V|)1/32766
b=1- loga(min|V|) with
log x = log x/log a

The absolute experimental value is then converted into
its biased log signed as the original value and stored in an
integer precision array.

Encoding is accomplished by:

where b is the bias as above and c is 1/log a.

Decoding is accomplished by:

where d is log a.

For b = 16000, ¢ = 2000 and d = 5E — 4, for example,
numbers between +0.0003357 and +4374 as well as+0
can be represented, with an accuracy greater than 3 parts in
10,000, by an integer. The smaller the dynamic range, the
greater the accuracy.

Properties of the coded value are such that zero will
always convert to zero, an underflow results in zero, an
overflow in recoverable Error 105 on attribution to the in-
teger variable, and the relational expressions (<, =, >)
remain valid between variables coded with the same base
and bias. The relational expressions always remain valid
when one side is zero. Direct multiplication and division may
also be performed after separation of the sign, but checks on
sign, overflow and underflow will nullify the gain in execu-
tion time compared to decoding-multiplication division-
encoding.

R

2-12 9830

Speeding Cassette Tape Access Time

by Thomas Krantz, Bermuda Division of Palisades
Geophysical Institute, St. Davids, Bermuda

A decrease in cassette tape access time can be obtained
by using a different file marking routine than the method
described in the manual.

To illustrate the difference, two tapes were marked with
ten usable files of 3000-word length. Figure 1 illustrates the
marking method described in the calculator manual, which |
will refer to as the “‘normal’” method. The different marking
routine, referred to as the ‘““modified” method, is the same
as the normal method, except that a minimal size file (4
words) is inserted before each usable file (see Figure 2).

The seventh usable file, File 7 of the normal tape and
File 15 of the modified tape, was selected as the reference
file. Time measurements with a stop watch were made be-
tween the execution of the LOAD 7, 10, 10 command and
the appearance of the first line of a dummy program in the
display.

Prior to the LOAD 7, 10, 10 (15 for modified tape), the
tape was positioned using the LOAD, FIND and REWIND
instructions. Two sets of FIND commands were used, since
the normal tape was sensitive to the position of the tape
prior to the FIND command — rewinding the tape before
executing the FIND command, and positioning the tape to
the end, File 10 for normal and File 20 for modified, before
executing the FIND command.

In all cases except one, access time of the modified tape
was faster than the normal tape. For the 31 measurements
made, the mean and standard deviation are:

M = 83.0 sec sd = 30.9 sec
M =61.2 sec sd = 24.7 sec

normal tape
modified tape

The modified method does have its drawbacks:

1. It takes about 6 minutes longer to mark the tape.

2. File positions are not in direct order, but this can be
adjusted for by using a conversion statement where
modified file number = (2 x normal file
number) + 1.

Qur conclusion is that the modified method of tape
marking wins hands down. The methods used to test it are
by no means complete, but are good enough to warrant
using the modified method for a while to see how it works
for you.

P IR

MRS
R 0 e

E s
T

2 5 T

JE T, o
PRt R R
oy N Rhb AL R

o

Figure 1

Figure 2a

.
XA

...,_.
LA AR

L
ot
SRR TR IR U KA

;A

vy N O
1

—
AR

AR A BT B B

AL

T T

AR WA A
ey e
o S L

e bk b po
MRV N

e
+x

"
A

Fi]

T T

Y AR O

e e e e pne T e R T R O
U I o Bt B R IOU U RS RO U KRR RY

..,.
i

A 0 EF LB 0 P S 0 T A e T e O

(R R e o e]

e e o e
DA A R AR AN

L

Py

Figure 2b

Recoverable Error 59s

by Ian Bird, . T. Bird and Associates, Watson, Australian
Capital Temitory, Australia

Over 90% of the Error 59s | have experienced are re-
coverable without loss of data or program. Other users have
verified this statement.

Recoverable errors appear to be caused by the tape
wearing a very thin sliver of plastic off the tape scraper insert.
This hair-like plastic fibre touches the read head and causes
errors.

Cut the fibre with a pair of scissors and all is well. A
magnifying glass could well be of assistance.

(Normal) Ridge on Scraper’s Underside
Thin Sliver Wormn Off Scraper
L (Remove with scissors)

\ N

\\ ’
Cassette Case

L
had ///// @ //////
Ly J \

f \
Scraper Pressure Pad Tape

*A Magnifying Glass is Required to See the Fibre

Speeding Execution Time

by John Bidwell, Hewlett-Packard, Desktop Computer
Division

The HP 9830 spends a significant amount of its execu-
tion time searching for variables in the symbol table. The
deeper a symbol is in this table, the longer the search time.
To achieve a saving in execution time of large programs with
many variables, highly used variables can be put at the best
location in the symbol table. The rules for where variables
are in the symbol table are as follows:

Searched first
(best execution time):

1. Last simple variable en-
countered during
EXECUTION.

2. Previous simple variables
3. Common Statement (first
variable searched first).
4. 1st DIM Statement (first
variable searched first).
Searched last: 5. Other DIMs (smaller line
#'s are better).
Example
10COMAB,C
20DIMD,EF
302=1
40 DIM GH,I
50 X=1
1000 END
Symbol Table

Searched first X } simple variables

>N

COM

last DIM

B
C
D
E {1st DIM
F
G
H
I

Searched last:

In the example, if no new variables were encountered,
‘X’ would remain at the top of the symbol table and should
be highly used (as FOR LOOP, counter variable, etc.). ‘Z’
should be the next most highly used variable, and so on.
Therefore, by finding the most highly used variables in an
existing program and initializing them at the appropriate
point in the program, a significant saving in execution time
can be achieved.

9830 2-13

Signa]ing the End of a Program Lists of the main program, COPRG, and of the transfer
by David M. Kuchta and Rona J. Newmark, Case program, PRGNAM, between Unit #0 and #1 are given.
Westemn Reserve University, Cleveland, Ohio

In the course of our programming on a Hewlett-Packard
9830A, we have developed the following method of signal-
ing the end of a program, or a particular segment of pro-
gram, such as a lengthy routine followed by an input by the
operator. By inserting

10 A=91919191919191919191919191919

FEC1TaOF01]

at the end of a segment, the calculator will emit its charac-
teristic beeping sound for ten seconds. Since this results in a
recoverable error (error message 100 — numeric overflow),
program execution can be continued at the next line. Each
time the expression is raised to another power of 9, the
machine will beep for another second.

FRM

L
Aligning Printed Headings

by Jack L. Gehrs, Tico Office Equipment and Supplies,
River Forest, lllinois

When | wish to align a printed heading with a succeeding
formatted output, I fill the WRITE line with numbers that
equal each format statement first. I then go back and fill in
the necessary heading.

Example

18 FORMAT F2.8

28 WRITE (15.18)

20 WREITE (15
(second writing)

38 FOR I=1 TD S

38 WRITE (15018114

SE OMEST 1

I have found that filling the words first and then going
back and removing the numbers remaining with the space
bar to provide spaces is the easiest procedure.

Transferring Program Files
Between Two Mass Memory Units

by Ing. Giuseppe Barzagli, S.I. M., Bologna, Italy

This tip requires a 9830A, String Variables ROM, 9880B
Mass Memory System and related Mass Memory ROM.

I've found the following program useful to transfer a
program file between two mass memory units without
changing the name of the program file and without renum-
bering the lines. This is very important in cases of transfer-
ring many files of the same program without using the platter
duplicate procedure; the program could not otherwise find
the right subsequent files of the right line numbers. T —

Alternately, it is dangerous and tedious to use the
keyboard command sequence UNIT, GET, UNIT, SAVE.

The program operates by building a new program with
the ordered sequence of UNIT, GET, SAVE, and the right
program file names and numbers. This program is im-
mediately executed and, when the transfer has been ac-
complished, the control is passed again to the main pro-
gram, COPRG, which is always resident in Unit #1. In Unit
#1 is needed the data file COPRG of 1 record, too, as an
intermediate storage for the generated program.

2-14 9830

Avoiding VAL Function Errors

by William J. Zehner, Seascope Electronics, Inc., Lynn
Haven, Florida

When writing programs that perform several distinct but
related functions, it is sometimes useful to arrange for the
operator to branch to various routines from a command/
data input statement by using specifically designated alpha
commands. Using this technique, the input variable must be
a string name, and if, after looking through a set of defined
alpha commands, the calculator finds no recognizable
match, it should assume that numeric data is present. At that
point we can utilize the VAL function to extract the numeric
from the input string.

The difficulty with this procedure is that if the operator
misspells or accidentally uses an undefined string, the tests
for defined commands will be failed, an attempt will be
made to take the VAL of a nonnumeric argument, and an
Error 76 will result. The accompanying program illustrates
one nice way to get around this problem. Beginning at line
110, the first character of the input string A$ is compared
with each of the digits O through 9 contained in the check
string C$. If any of the 10 digits is found in A$(1,1), the
program branches to exercise the VAL function. Otherwise,
an Invalid Entry message is flashed, the input rejected, and
the program returns to the input statement to give the
operator another try. A String Variables ROM is necessary
for this program.

Example

Inputting Varying Quantities of Numbers
by Robert Hardesty, DuPont, Rochester, New York

Inputting of several numbers from the HP 9830A
keyboard is normally controlled by the number of variables
specified in the INPUT statement. Sometimes it may be de-
sirable to allow a varying quantity of numbers to be input;
for example, plotting routines for a variable number of
curves from different data tape files.

The following schemes allow inputting any quantity (up
to 20 in these examples) of numbers. When requested, the
numbers are typed in, separated by commas, as usual, and
are input as a string. The VAL statement returns the numeri-
cal equivalent of the string up to the first nonnumeric digit, a
comma. This value is either used immediately or placed in
an array for later use. The 9830 then searches for the first
comma and resets the string equal to everything beyond the
comma. The program then returns to find the VAL of the
new string. When a comma is no longer found, the loop is
exited and the rest of the array can be filled with dummy
zeros. N is then the number of variables input.

To use the numbers immediately:

To accumulate the numbers in an array for later use:

9830 2-15

& T T e=aawsmia g lvslallla
Py William Thompson I, Mine
Engineers, Inc., Greeley, Colorado

The HP 9830, despite its small size a
of much more than most users realiz
Through experience it is soon foun

r and Miner, Consulting

mally slower on the 9830, but bec

1. First, the dimension statements were closely
examined to determine the number of words of
830 memory Necessary to fully dimension the ar-

rays. In this conversion 9830 with 5856 words of
available memory was to be used, so the dimension
s.tatements were set up as in Figure 1, decreasing the
size of. circuit that could be analyzed, but not criti-
cally since past experience indicated that 95% of all
cases run in our office used less than 20 busses and
spare lines, Note that split precision in the 9830 is
the same dggree as full precision frequently found in
qther machines, and in a like manner double preci-
sion on other machines may represent the same
degree of precision as 9830 full precision.

2. Next, the program flow was examined, and it was
found that the program naturally broke into 5 seg-
ments. lterative processes and loops that must cycle
repeatedly were retained completely within a seg-
ment so that repeated loading of tape files, one of
the slowest 9830 functions, was avoided. If disc files
are available, such repeated program loads may be

tolerable but still are avoided ideally.

3. Conversion on a line-to-line basis was begun. After
some thought, the decision was made to replace
FORTRAN variables by BASIC variables in se-
quence as they appear in the program. The alterna-
tive, attempting to imitate the FORTRAN variables
by the retention of the same first letter or other
means, results in a great confusing tangle. The only
exception was to retain all index variables such as I,
J, K, and M, used in “DO” loops, since they will be
used repeatedly. A table starting with AQ, A1, A2,
etc., was set up and FORTRAN variables assigned

as each line was translated.

4. Inalike manner, a table listing equivalent line num-
bers eases the conversion of transfer of control
statements {IF... THEN, GO TO, etc.).

5. FORTRAN “IF” statements are replaced by 1 or 2
BASIC “IF” statements. When replacing line num-
bersin “IF” and “GOTO” statements, use a stand-
ard number such as 1 or 9999 if the number refers
to a statement that has yet to be translated, rather
than attempt to calculate its future line number.
After conversion, these are easily picked out and the
line numbers changed to effect the proper transfer.

6. “FORMAT” statements that cannot be translated
directly because of a required change in format,
such as moving from a 132-character line to an 80-

2-16 9830

character line, are best changed b i
Statement like: ged by entering a

950 FORMAT “FORTRAN STATEMENT
#125”, 8F8.0

Tl'ien when you have the program running, it will
print out the values and a reference to an appropri-

ate format statement in your FORTRAN

FORTRAN (IBM 360)

Figure 1

The Load Flow program was converted to BASIC in
about two weeks in spite of a complete lack of knowledge of
the actual power system formulas and units that the program
used. A sample case was run on the 9830 to compare with

results from a FORTRAN solution of the case. The 9830

results were in close agreement.

Do not expect exact agreement. The way the numbers
and calculations are handled in different machines varies
and may result in a buildup of accumulated “errors” —
residuals may be a better word. The results should not be
significantly different, however, so if they vary greatly, closer
study is certainly necessary.

Converting the Load Flow program for use on the 9830
had an unforeseen outcome. Access to the program and
turnaround time was so greatly improved that use of the
program on the 9830 increased to a point where former

users were finding it difficult to gain access to the 9830.
Since our budget didn’t allow purchase of another machine,
another solution had to be found. The users of the Load
Flow program indicated it would be acceptable to run the
long cases, which were running up to 2 hours at a time, on
an overnight basis. This would normally give results in less
than a day or quicker, if priority seemed to demand it. These
runs were not necessary every night and hiring another
operator did not seem reasonable, so a sort of job-control
program and operating system was created.

For this purpose the program listed in Figure 2 was writ-
ten. Using 3 files {335 words) on a tape, it is able to run the
program stored in files 1 through 5 with the data in up to 44
of the following files. The data for the original load flow was

input as a card deck, and the converted version retained a
semblance of this using “DATA” lines to imitate the cards.
This seemed more desirable than keyboard entry during the
program because of the great amount of data input neces-
sary and the wish to keep it in a form where minor altera-
tions could be made and the program rerun without dup-
licating the original key input. The only necessary addition to
the data files was the last line (Figure 3) “MERGE
1,2000,2000”. Changes to the load flow program itself were
minimal. All exits such as “‘END”’ statements were changed
to “LOAD 6, 10, 10", which returns control to the job-
control program. If you have the “SERROR”’ statement
available on your 9830, even data and program errors won’t
stop the sequence of the jobs to be processed.

File 0

File 6

Figure 2
File 7 — Data file in which array “A” is stored.

Figure 3

This program has been used very successfully, expand-
ing the use of the 9830 to around-the-clock on many days.
In addition, this job control has been extended to other
programs. Indeed, more than one type of program may be
run at night by changing only the “MERGE” statement at
the end of the data file to link with the appropriate program
file. The number of programs or program runs is limited only
by your tape or disc capacity or the means of entering exter-
nal data into the machine. Even without the addition of that
lovely HP Mass Memory, we still are planning on greater use
of “‘batch” procesisng aided by a paper tape reader for data
and the later addition of an external cassette for more pro-
gram storage.

Salvaging a Program with
ERROR 59 (9830A)

by Andrew Vettel, Jr., Steel Valley School District,
Homestead, Pennsylvania, U.S.A.

When loading a program from a tape file and an ERROR
59 (check sum) occurs, more often than not it is impossible
to list or display any lines at or beyond the line where the bit
error occurred. Further, ERROR 1 occurs if an attempt is
made to store those lines that were loaded without error. For
example, STORE 2, 10, 240 will produce ERROR 1 even
though there are no errors in lines 10 - 240.

The following procedure makes use of the RECALL buf-
fer to transfer the undamaged lines one by one from main-
line memory to a special function key, say fo:

STEP KEY COMMENTS
(1) FETCH } Places lowest numbered
(2) EXECUTE line in display
> (3) BACK Removes F
(4) END OF LINE Store line in the RECALL
buffer
(5) FETCH } Access SFK where lines are
(6) fo being stored
(7) RECALL Retrieve line from
RECALL buffer
(8) END OF LINE Store line on the SFK
(9) END Exit the SFK
(10) Place next line in
display

Repeat procedure
beginning with Step 3

Care must be taken not to attempt to place in the display
any “‘damaged” lines. Once all salvagable lines have been
placed on the Special Function Key, mainline memory
should be SCRATCHed before the lines of the key are then
stored in a nondefective tape file.

9830 2-17

WRITE and FORMAT Incorporating
Variable Length Strings

by G. Fletcher, Plessey Telecommunications Ltd.,
Beeston, Nottingham NG 9 1LA, England

It is often desirable to produce output with embedded
variable lenth strings but maintaining tabulation of output
columns. By extending each string to the maximum length
as dimensioned, the subsequent variables remain tabulated.

Lines 30 - 50 in the example below will maintain string
length and hence tabulation of results.

WRITE and FORMAT Incorporating
Variable Length Strings

By means of Keyboard 1978/2 we discovered that a
sure way to receive world-wide comments from our custom-
ers is to publish a programming tip using one of several
possible techniques to accomplish a particular purpose. In
response to the programming tip by G. Fletcher, we re-
ceived letters from ten readers from Australia, South Africa,
Italy, the Netherlands, Spain, the United Kingdom and the
U.S.A., suggesting alternative means to improve the method
of maintaining string length and tabulation of output col-
umns. We appreciate these letters, and have determined
that the following coding will accomplish the task effectively.
This was suggested by W. Guttormsen, McWilliam &
Partners Pty. Ltd., Brisbane, Australia, and Josep M. Masso,
La Vanguardia, Barcelona, Spain.

The coding in line 20 is changed as follows, and lines 30,
40 and 50 can be eliminated.

20 READ A1[1,32],AB.C
.]
FORMATting the Display

by Andrew Vettel, Jr., Steel Valley School District,
Homestead, Pennsylvania, U.S.A.

The formatting capability available with the WRITE
statement cannot be used in the lighted display of the 9830A

since no select code is provided for the display. However if
both the Strings and Extended 1/0 ROMs are installed, a
formatted display may be accomplished as follows:

2-18 9830

Transferring Values

by Daniel Treep, Folkert Postlaan 15, Abcoude, The
Netherlands

9830A users who want to transfer values from one vec-
tor or matrix to another may use the matrix assignment
statement if they have the Matrix ROM installed in their
calculator. MAT X = Y is the usual procedure. However, if
the dimensions of the arrays are not compatible or if there is
no Matrix ROM in the calculator, the transfer can be ac-
complished this way:

Those who have the String Variables ROM at their dis-
posal can make transfers more efficiently:

Sometimes (not always) this procedure saves calculator
memory, but at any rate the transfer of array values takes
place much faster. The operation is also possible if the array
elements do not represent ASCII characters; even negative
values are allowed. The string must be at least twice as long
as the number of elements that are to be transferred be-
tween the arrays, and the used part of the string must cor-
respond exactly with this number. For instance:

Parts of arrays can be transferred in a similar way:

The elements Q(3,5) through Q{3,8) are now transfer-
red to A(3) through A(6).

The following restrictions must be kept in mind.

1. Only integer arrays can be handled in this way.

2. Matrix rows, not columns, can be transferred via
strings. (Sometimes the Matrix “TRN” statement
will be helpful.)

3. The maximum length of arrays that can be transfer-
red at one time is 127, because the maximum even
string length is 254.

-/
Determining the Centroid of a Figure

by Bob Fioren, Red River Valley Potato Research
Center, P.O. Box 113, East Grand Forks, Minnesota 56721,
USA

This 9830A program finds the centroid of any figure
traced with the HP 9864A Digitizer. The 9864A is com-
monly used to calculate areas and curve lengths, but the
centroid capability may have been overlooked by many
users.

The centroid coordinates, X and Y, are closely approxi-
mated by the sums:

_n
X =3 XiAAj
i=1

_ n
Y=2 YiABi
i=1

where

N = total number of points entered, at 4.5 pt./sec. rate,

AAi = trapezoidal area increments having the Y axis as

base,

ABi = trapexoidal area increments having the X axis as

base.

The centroid increments are calculated and summed in
program lines 50 - 90. The SGN(Y) and (X-X1) terms in line
50 insure that the X increments are subtracted when X is
increasing and Y <0, or when X is decreasing and Y>0. A
similar rule holds for the Y inécrements. A clockwise tracing
path around the area has been assumed.

When the area has been once circumscribed, the “‘O”
key on the wand is pressed, which enters the (0,0) point.
Lines 100 and 110 interpret this, stop data entry and cause
the centroid coordinates to be printed in inches referenced
to the origin. The routine of lines 500 - 520 can be used to
pinpoint and mark the centroid location.

1. The origin is arbitrarily chosen, except that points S
and Q must lie in the same quadrant.

2. Begin clockwise tracing at arbitrary point P on the
boundary.

3. Atarbitrary point Q, press ‘“‘C"’ key on tracing wand
to halt data entry. Slide wand to point S and press
“C” to resume data entry and trace counter-
clockwise around the hole. When point S is
reached, press “C”’. Atpoint Q press “‘C”’ again and
resume clockwise tracing.

4. When point P is reached, press “O” key on wand to
stop data entry and print the centroid coordinates.

.]
Implementing a Binary Switch

by Andrew Vettel, Jr., Steel Valley School District, 1705
Maple Street, Homestead, Pennsylvania 15120, U.S.A.

Many programmers use a variable as a flag in order to
have two distinct states, usually O and 1. If you wish to have
the state continuously alternate each time a certain line is
reached in a program, the following assignment statement is
useful for doing just that in a single line:

100LETF =(F =0)

When F’s values is 0, then the logical expression F = O is
true and has a value of one, which is then assigned to F.
Conversely, if F’s value is one, then the expression is false,
or 0.

Further, any two values may be alternately chosen. For
example, we may switch F’s value between the value of A
and the value of B:

100 LETF = A%(F = B) + Bx(F = A)

Of course, if the value of either A or B were 0, one of the
terms may be eliminated.

9R30 2-19

A Structured Approach To Program
Overlays

by Tim D. Baringer, Ames Research Center, Moffett
Field, CA 94035 U.S.A.

Many of you with 9830s have likely vielded to the temp-
tation to write large programs requiring many overlays. If
you have a mass memory, this temptation is increased and,
as in this shop, you are routinely developing systems with
five to 15 overlay segments. The straightforward or GOTO

approach to structuring overlays results in code that looks
like:

18 REM. o HRIH PROGRSAN
188 CHATH " LAy s

EHQHCHHIH CLANET

The overlay module (after being loaded into memory)
looks like:

1868 BEM. . OVERLAYL

1266 GOTo 114

There are two difficulties encountered with this structure.

1. Thelast GOTO in the overlay must be especially
dealt with during program development. The whole
overlay must be RENumbered beginning at the in-
tended load point called out in the chain or GET
command to prevent renumbering during loading,
and the final GOTO must be updated to the ex-
pected return point before storing this overlay
module.

2. Each time the load point line number changes, the
return point line number changes, or the overlay
module is required at more than one place in the
main program, the overlay module must be edited
to account for these changes.

For only one or two overlays this structure is
fine, but it quickly becomes burdensome after more
than two overlays. An alternative approach to the
structure of handling overlays is:

2-20 9830

This technique allows the programmer to insert, delete
and renumber program lines in both the main and overlay
modules without further editing or special handling of the

code. The overlay module (after being loaded into memory)
looks like:

Using this method, we let the 9830’s operating system
take care of the return to the main program. However, the
9830 initializes its list of GOSUB returns on each CHAIN or
GET command. Thus all hierarchy in program structure
must be contained in the main program. This may be
viewed as a benefit by structured programming buffs.

A two-level hierarchy might look like:

1 EEM.

Even when using this method, the structure becomes
quickly complicated if you attempt toco many levels of
hierarchy. However, this method maintains the advantage
of a consistent pattern in the structure. No special modifica-
tion of the code is required after simple editing, and the
complexity is a function of the level of hierarchy, not the
number of modules.

When using GET (or LOAD for cassettes) instead of
CHAIN (or LINK), be sure to declare the module indicies
A B, etc., and include other pertinent information in a
COMmon statement.

Section 3

9825

Index
Section 3 - 9825

Refill of Word-Oriented Buffers 3-1
Howto MoveaProgram Line i, 3-1
Filling a String with Spaces 3-1
Labeling Special Function Keys 3-2
Subroutinesand Functions 3-2
CatalogingFiles 3-2
Detecting Missing Data in Formatted Input

withthe General /OROM 3-2
Temporary Buffer 3-3
Memory Files 3-3
Changing Number Format 34
READ/DATA Capability in HPL i 34
Erasing 9825A Tape Cartridgesttt 3-5
A Fix for Backup Copy Command it 35

Instrument Approach and LandingGame o i i 3-5

Refill of Word-Oriented Buffers

by Sue Kolb, Hewlett-Packard, Desktop Computer
Division

If you want to calculate a complex series of words to be
sent repetitively to a black box and perform other calcula-
tions at the same time, you can avoid recalculating the series
each time it must be sent.

Let's say that “FOON”’ is as follows:

“FOON"=B$= |XYZPQR [|

e,
Contents Pointers

Code to/|dim B$ (6 + 16)

create buf “FOON", B$, 2

buffer: wtb “FOON”, 88 « 21 8 + 89,
90218 +80,81218+ 82

Since “FOON’ is a word-oriented buffer, we can think of
its contents as pairs of characters:

Y | word 1
P | word 2
R | word 3

B$ references the same information as single characters:

char. 1
char. 2
char. 3
char. 4
char. 5
char. 6

The wtb command tried to write characters into a
word-oriented buffer, so it had to pad the rest of each word
with blanks:

ON]><

AR

¥l X
BlY
| Z

Notice that now only half of the old contents will fit; the
buffer overflows.
The solution to the problem is as follows:

“FOON" —[XVZPQR]]
=[XYZPQR]

Retain two copies of the contents. When the transfer is com-
plete and the buffer is empty, fill the buffer with blanks to
reset the pointers and then copy T$ into the buffer content
area. The buffer is thus refilled with the old contents and can
be again transferred. The code to perform this operation, in
general, follows:
0: dimB$[2N + 16], T$[2N]
where N = number of words in buffer.
1: buf“FOON”, B$, 2; oni2, “‘reset”
set up buffer; when device is through with transfer,
branch to service routine “reset”.

2:.0-Q
Q is a flag indicating end-of-transfer and time to start
again.
3, flFOON
4 ... usingwtb ...

5: B$[1, 2N] — T$; buf “FOON”
set up T$; wipe out old FOON as though transfer
completed.
6: “dean FOON": fmt Nx, z; wrt “FOON”
fill FOON with blanks (sets pointers to full).
7. “reload FOON”: T$ —-B$
replace blanks with old contents.

8: tir “FOON”, 2
transfer FOON out to device 2.

9 ifQ=0;jmp 0
wait loop (could be other parts of the main program
calculations).

10: 0 ->Q; gto *‘clean FOON”
when interrupt has been acknowledged, reload
FOON and start process again.

11: “reset’: 10 — Q; iret
set Q flag to signal interrupt.

Note: you must substitute a number for N everywhere in
the above program.

In summary, you can refill byte-oriented buffers using:
witb “Buffer name”, string variable associated with buffer.
But word-oriented buffers require lines 5, 6 and 7 above.

How to Move a Program Line
by William Deatrick, Alexandria, Virginia

A friend of mine, Scott Layson, has discovered a useful
technique. After writing a program, I sometimes find it
necessary to move a line to another position. For long lines,
retyping is very tiresome to say the least. The following
method allows the user to move a line from one place in a
program to another without retyping it. Fetch the line to be
moved. Press BACK and then STORE. This places the line
in the first of the two RECALL positions. Then fetch the line
that is to be after the inserted one. Press RECALL. The last
FETCH command will appear in the display. Press RECALL
again and the line to be inserted will appear. (That double
RECALL is quite useful!) Press INSERT (line) and the line is
in place. Then go back and delete the unwanted line.

I would like to say how pleased I am with the 9825A. ltis
truly a great step forward in desktop programmables.

Filling a String with Spaces
by Howard Rathbun, Hewlett-Packard, Desktop Com-
puter Division

It is often necessary to fill a string or portion of a string
with a number of spaces. This method, which uses a for-next
loop, is one way to do this:

The method shown below not only uses less code, but is
about 80 times faster. Note, however, that this second
method can be used only for filling the entire string with
spaces.

9825 3-1

Labeling Special Function Keys

by Sam Sands, Hewlett-Packard, Desktop Computer
Division
To avoid guessing what your Special Function keys do,
label your key files and the individual keys. Then you need
only do alist k to see at a glance what each key is for. You
can:
1. Put a label in front of an executable statement,
2. Use a label instead of a statement number in a
CONT command, or
3. Putin a dsp statement. The key then tells you what it
is doing as soon as you press it. You don’t have to
wait for a program to be loaded from the tape car-
tridge, for example, before you know whether you
hit the right key.
If you should accidentally press the wrong key, press
RECALL to see what key you pressed.

—
Subroutines and Functions

by Howard Rathbun, Hewlett-Packard, Desktop Com-
puter Division

Callable subroutines and functions should be placed at
the beginning of a program for faster execution. Function
and subroutine calls always search for the subprogram label
starting at line 0. The time saved is not a great amount per
line (about 30 us), but for large, long-running programs the
savings in time can add up.

C . J
Cataloging Files

by Eldon Brown, Hewlett-Packard Company, Bellevue,
Washington, U.S.A.

The following program will produce a catalog of the files
on the 9825A tape cartridge. Each file number will be
printed along with the file type, current size and absolute file
size. The program requires the use of the Strings, General
/0 and Extended /0O ROMs.

If the file to be cataloged is a program and line zero of
that program is a label (possibly the name or a description of
the program), that label wil be printed instead of the file

e.
The files will be cataloged starting with track zero, file
zero. When the null file (the last file) on track zero is encoun-

3-2 9825

tered, this program will automatically switch to track one and
catalog the files on that track.

You can prematurely switch tracks by setting flag zero.
This can be done in live keyboard while the program is
running.

If you want to modify this program, make certain that
variable N equals the next available program line number (in
this program, 34) as it is assigned in line three. Also, ensure
that the third parameter of the Idf statement {(found in line
21) has the value of the line number that follows the idf
staternent (in this program, 22).

Detecting Missing Data
in Formatted Input
with the General /O ROM

by Dr. R.K. Littlewood, Biophysics Laboratory,
University of Wisconsin, Madison, Wisconsin, U.S.A.

An undocumented feature of the General I/0O ROM for
the 9825A allows one to differentiate between zeros and
blank fields when doing formatted input. This capability is
very helpful when writing statistical programs that must
accommodate missing data. When a “‘red” statement is
executed and any field designated by an “fw” specification
is completely blank, the value of the corresponding item in
the data list is left unchanged, rather than set to the value
zero. The following test program illustrates the point. (Select
code 2 is a 9883A Paper Tape Reader in this example.)

Input:

Output:

Note also that this General IO ROM feature requires
you to preset values to zero before doing a “‘red,” if blanks
are to be interpreted as zeros.

Temporary Buffer

by Don Albrecht, Ford Aerospace, Newport Beach,
Cdlifornia, U.S.A.

During the course of running a large program in a
98254, it is sometimes desirable to allocate a temporary
buffer, and, when the buffer is no longer needed, to reuse
that area of memory. The diagram outlines the basics of the
problem and its solution.

A sample program listing is also shown. This solution
interrogates a data file containing either a “1”, meaning the
buffer is not currently allocated, or a ““2”, meaning that the
buffer is allocated.

1. Need temporary buffer:
Memory before buffer is needed.

user
program| ... 50
unused | —

variables tape

2. Establish buffer:
Buffer attached for [/0 speed

user
program

buffer
variablgg

3. Buffer no longer needed:
Buffer is gone

buf

user
l d m program

ONO) > lunused
tape variables|

FRTLFELE
EMOR
AN

i
i

Memory Files

by George B. Bosco, Jr., Bosco Engineering, Whittier,
Cdlifornia, U.S.A.

You can fool your HP 9825A Opt. 001 or Opt. 002

desktop computer into thinking it has no optional memory.

1. Find an HP 9825 without optional memory. Install
the ROMs you plan to use. Enter a one-line dummy
program (such as 0: “OPT000’:). Create a 7990
byte memory file on tape, or a 7478 byte memory
file on a diskette.

2. Put your ROMs in your Opt. 001 or Opt. 002
machine. Turn the 9825A on and load the memory
file of step 1. Press RESET.

3. Your 9825 now has no optional memory. Load
small programs and/or data. Run programs. Record
memory programs and later recall them. In other
words; use as a calculator without optional memory.
Do not execute “erase a” (erase all).

4. To restore 9825A to normal full memory size: exe-
cute “‘erase a” or turn machine off and then on.

You save file space and time by using this technique if your
programs are small enough to run in this size memory. Simi-
larly, use a 9825 with Opt. 001 memory to create an “Opt.
001"’ memory file for use in an Opt. 002 machine. To create
the “Opt. 000” & “Opt. 001" memory fies using your Opt.
002 calculator ask your HP Service Representative about
memory switches.

I~ CoOmputer
@;{’Museum

9825 3-3

Changing Number Format

by Ricardo Casado, Los Ruices, Caracas, Venesuela

This program changes the numeric format xxxxx.xx to
the format xx.xxx,xx as is used in much of the world.

34 9825

READ/DATA Capability in HPL

by Joseph Pepin, Western Electric Engineering Research
Center, Princeton, New Jersey, U.S.A.

A deficiency of HPL as compared to BASIC is that it
lacks the capability of storing data within the program sec-
tion. A program that requires a large amount of constant
data is awkward in HPL. You must either enter many lines
like 1> A, or write a program to accept the data from the
keyboard and put it on tape or floppy disc. BASIC has a
“READ’ statement that does a read-from-memory of data
contained in “DATA” statements.

It is possible to duplicate this capability in HPL using a
surprising property of the “list” statement as reported by
Howard Rathbun in a DCD paper available from Keyboard.
This involves using the Advanced Programming ROM’s
single-quote function to return a string to the General I/0
Programming ROM’s “list#” statement. This string is actu-
ally the name of a buffer set up using the Extended I/O i
Programming ROM. In this manner, the “list” statement is
tricked into using a buffer, something not otherwise allowed
by the syntax.

To synthesize a “READ/DATA” capability, another
single-quote function is used, this time within a “red” state-
ment. Besides returning the buffer name, this function
searches through memory for dummy ‘“‘data” statements,
using the “list#” statement and another single-quote func-
tion.

The dummy “data” statement is simply a long label con-
taining the characters “‘data” and a list of data items. When
the function finds one, it blanks out the “‘data’ and state-
ment number and returns the buffer name to the “red”
statement. The “‘red” statement uses this buffer as a fast
read/write buffer and reads the data from it.

The following short program demonstrates this
technique. The program requires the String, Advanced
Programming and Extended [/O ROMs.

.

Line 0: Dimensions a string that is going to hold a line of the
program listing.

Line 1: Establishes a buffer named “data”, which is the
string already dimensioned in line 0, and is Type 3,
byte-oriented fast read/write buffer.

Line 2: Reads three items of data into A, B, and C. Calling
the function ‘DATA’ will return the buffer name ‘“data”,
after the function has placed the data into the buffer.

Line 3: Prints the data just read.

Lines 4 and 5: Similar to lines 2 and 3, show that the ‘DATA’
function automatically positions a pointer to the next set
of data.

7: The ‘DATA’ function: Uses r0 as a line pointer, and
lists a single line of program into the buffer, whose name
is returned by the ‘dat’ function.

.ine 8: Advances the line pointer. Originally at O, it will point
to the next line the next time the ‘DATA’ function is
called. Setting r0 to O will mimic the BASIC RESTORE
statement.

Line 9: Checks to see if the program line just read in was a
dummy data statement. If not, it empties the buffer and
tries again.

Line 10: The program line just read in was a dummy data
statement. Blank out the statement number and the
“data”. The red statement reads the remainder of the
data statement as if from an external device.

Line 11: Returns the name of the buffer to the red state-
ment. An optional format number may be enclosed
within parentheses after a ‘DATA’ call. Otherwise the
standard format is used.

Line 12: The ‘dat’ function: Returns the name of the buffer
to the list# statement on line 7. The .1 ensures that the
listed line contains no extra line feeds nor the check sum.

Lines 13 and 14: These are dummy data statements contain-
ing the data in a long label.

./
Erasing 9825A Tape Cartridges

by Jackye Churchill, Hewlett-Packard Company,
Desktop Computer Division

Error 43 can occur during an ERT (erase tape) operation
to signify either a tape transport failure or an unexpected
end-of-tape. Normally, this is due to an incomplete erasure
caused by dirt on the tape or a loss of contact between the
tape and the tape head during high speed movement.
However, action must first be taken to determine if the error
43 was caused by tape transport failure. This can be done by
rewinding the tape. If error 43 occurs again, it can be
assumed the drive has failed. If error 43 is not caused by
transport failure, the following steps can be taken to correct
the problem.

The first step is to clean the tape head and capstan. Then
rewind the tape and execute ERT. These two procedures
can be repeated if necessary.

If the erasure remains incomplete, there still may be dirt
on the tape. Several high speed end-to-end operations may
be executed in an atttempt to free the tape of dirt. The
end-to-end operation is accomplished by executing these
two operations:

rew
fdf 1000

If this procedure does not complete the erasure and

eliminate error 43, the tape should be discarded.

L]
A Fix for Backup Copy Command
by Alberto Rodriquez, Condado Santurce, Puerto Rico

If 9825 users have ever tried to do a backup using the
copy 0%, D, S, N§, D, S format of the copy command, they
may have realized that although the new file is created, the
file, in effect, contains unreadable data. One could easily
miss this until there is need of using the backup file. Only the
format using string (or substring) variables as file names has
this problem, so a ready subterfuge is available:

Although cumbersome, this is the only way to do this
backup if the string variable name must be used.

R
Instrument Approach and Landing Game
by Chris Mills, Cook, Australia

Frequently during program execution it is valuable to be
able to modify a variable.

Extended /O ROM

Enter this program:
0: rdi 4—A;dsp A;jmp O

Now press RUN and you will see a free running display. |
think interface 4 is the register which holds the result of the
machine scan of the keyboard. This can be used to advan-
tage in ‘real time’ simulations. The following game program
simulates an aircraft making an instrument approach and
landing. As the program continually loops, rdi 4 is used to
scan the keyboard for control inputs which modify variables
and hence the power setting, pitch and azimuth angles.
Lines 29, 32 and 35 are the control inputs. Note that the rdi
4 statement is used twice to check to see if a key is being
held down. Although this simulation was written for fun, the
rdi 4 statement could be used in many ‘“‘serious” applica-
tions, e.g. in control applications you could vary the value of
variables to increase a temperature limit or change a motor
speed.

Conclusion

I have only used the rdi 4 statement in games but can
see that is could be a great help in control applications.

9825 3-5

3-6 9825

Section 4

9820 and 9821

One-Line Averaging
by Philip A. Dawty, Lansing, Michigan
The following one-line program for the 9820 averages N
numbers. END RUN PROGRAM should be pressed before

each series of numbers is entered. This causes printing
0.0000, which can be ignored.

Use of Card Reader and Printer
To List Cards

by Bob Huston of Surface Effect Ship Test Facility, U.S.
Naval Air Station, Patuxent River, Maryland

Following is some information we have discovered in
our use of the HP 9820A Calculator with 9866A Printer,
9862A Plotter, 9869A Card Reader, and Peripheral Control
ROMs I and 1L

1. Load Cards into reader.

2. Transfer 1.8 (PC II).

3. EXECUTE.

4. CONTINUQUS PICK (on 9869).

This will list cards on the printer. We have been using
this feature to list 80-column cards containing Fortran pro-
grams. We have the punched card option on the reader.

If FMT “AD”; WRT 1 is executed, and then RDB1->V
R(), a decimal code will be returned to the register that is
the decimal equivalent of the ASCII. For instance, a space
returns a 32, C is 40, 48 through 57 are digits 0 through 9,
65 through 90 are A through Z, and so forth. A 10 is found
at the end of a card. By looping back to the RDB command
and not the FMT, an entire card can be read in and de-
coded. This feature can be used to sort cards with the select
hopper option on the card reader and will work on alpha or
nureric data.

In our application we use the card reader and plotter to
produce report-quality plots. In order to make the leftering
of plots automatic, we use the routine mentioned above. All
plot heading data and plot points are put on cards by a
computer. The plots are done completely by the 9820, in-
cluding lettering. Heading data is read into the calculator
one column at a time. It is decoded using the short program
given below and plotted using the plot commands of the PC
IROM.

We also use this method for special lettering of plots. It
allows us to keypunch lettering and have the plotter produce
high quality, finished work.

4-2 9820 and 9821

Entry Space Saving

by D. J. Harley, John Wilson and Partners, Brisbane,
Australia

Frequently it is desired to print input data as it is entered.
This often results in the duplication of alphanumeric strings
in DISPLAY and PRINT statements. Trials to find ways of
eliminating this duplication led to the following:

When a STOP instruction is executed.following a PRINT
statement the printed information also appears in the display

thus serving as the alpha part of an enter statement. Data
may then be entered in the normal way and the implied Z
store operates so that the input value enters the Z-register,
i.e.,

Conventional Modified Method

N
TH

[IHEY =

BREH

LEMGTH (IME:

DEFTH (IHz)

EHGTH (IMED
o TDEFTH (THEY ="
s S

iz

FET "BREADTH

o s Fe " LER
="a "

Note:

a. A saving of 6 registers.

b. The ‘PRT inline 3 of the modified method. It is not
necessary to say PRT Z. This applies with a normal
input statement too, i.e., ENT “X-”, X; PRT;... will
cause the entered value to be printed

A similar technique may be applied using DISPLAY

statements where it is not desired to print everything as in
array input or with questions. The following example illus-
trates this for a series of questions {options) where the code
is: RUN PROGRAM to say ‘no’: Any number RUN PRO-
GRAM to say ‘yes’, i.e., to select the option. Repeated press-
ing of RUN PROGRAM wiill cause a cycle through the op-
tions available.

Modified Method

Conventional

Note the saving of 3 registers.
-/

Recovering A “Lost” Program
From A Tape File

by Arthur F. Graf, San Antonio, Texas

I once “lost” a very long, complicated program. The
wrong file identifier appeared at the heading of program file
20, and I did not want to spend several hours re-entering
and editing. Here is a method to recover such a “lost”
program.

Clear calculator.

Load in about 10 lines of GTO +1

Then stack other programs in the memory until this new

“program’’ is slightly longer than the “lost” program.

GTO O

RCF 20

The instant the new heading has been recorded on the

tape, open the cassette door. Remove the tape and
shut off the calculator.

Restart and initialize.

LDF 20

When the machine detects an error in loading and starts

to rewind, press STOP and hold until operations
cease.

CLEAR

GTOO

LIST

The first few lines will be GTO +1 and other irrelevant
data. The end of the program also may contain irrelevant
data. Edit out this data and replace missing lines. The bulk of
the program should have been loaded intact.

9820 and 9821 4-3

Arctan Between + 180 Degrees

by Dr. Anthony F. Gangi, Professor of Geophysics, and
L. David Jones, graduate student, both of Texas A&M Uni-
versity, College Station, Texas

Their tip involves calculating the phase angle of a com-
plex number (i.e., taking the inverse tangent of a ratio) so
that it lies between + 180 degrees. The inverse tangent
routine on the 9820 Math ROM gives an answer between +
90 degrees. This is because the inverse tangent is mul-
tivalued. However, when the signs of the numerator and the
denominator are individually known, as in the case of com-
plex numbers, the proper quadrant can be determined for
the inverse tangent. The algorithm is based on the following:

given (1) a complex number
Z=X+iy

and (2) the phase of the complex number

8 = TAN™ (y/x),
then the phase angle in degrees, radians, or grads can be
found by using the following one line of code (Table 1,
Table 2, or Table 3, respectively, must be set; assume X in x
and Y in y, then 6 will be in A):

0: SFG 14, ATAN (Y/X) —2 ATN 1E99
0> X)[(0>Y) — (0=<Y)]— AF
The need for SFG 14 is to avoid NOTE 10 for 90°, x = 0,
y>0and —90°, x = 0,y < 0.

Stored Data Printout

It is often useful to examine the quantities stored in the
9820's data registers without manually searching through
the memory. This short program scans the available mem-
ory and prints out only the contents of all data registers that
contain non-zero values. The alpha register contents are
printed first, followed by the R() registers in ascending order
through R402.

The program listed here is for the expanded internal
memory, either without plug-in ROMs or with the Mathema-
tics ROM. For other ROM and/or memory configurations,
lines 8, 9, and 10 may be edited easily to scan all of the
available data registers.

This program can be entered to replace the one using
the stored data in order to list the data, after which the
original program can be reentered with the data still intact.
The data can also be recorded on a magnetic card for easy
reentry, as shown on pp. 5 - 40 of the 9820 Operating and
Programming Manual.

Instructions
1. END EXECUTE LOAD EXECUTE
2. END RUN

3. ldentification of all data storage registers containing
non-zero values and their contents are printed.

4-4 9820 and 9821

Program Listing

Example

Foolproof Data Entry Line
by Richard Trommer, Kew Gardens, New York

When the 9820 comes to an ‘ENTER’ statement it stops
and waits for data. If the user does not enter any data the
program continues using the number that was stored in the
variable previously. But if you ignore an ‘ENTER’ statement
like this, flag 13 automatically is set. You can use this to your
advantage. At the end of an ‘ENTER’ statement simply press
the following: IF FLG 13; CFG 13; JMP Q. f this is done the
calculator will not be satisfied until data is entered. This
avoids the possibility of accidentally running a program with
incorrect data.

Divisibility Test
by Richard Trommer, Kew Gardens, New York

Many times while programming the programmer discov-
ers that he would like to test a number for divisibility by
another number. This can be accomplished very easily on
the 9820. Suppose you want to see if A is divisible by B. The
following expression is equivalent to saying ‘if A is divisible

by B’
IF (INT(A/B)*B) = A,
The Math ROM or equivalent is needed for this test.

Transferring Program Lines

by Professor Anthony F. Gangi, Professor of
Geophysics, Texas A&M University, College Station, Texas,
USA.

An important operation in editing programs in the
Hewlett-Packard 9820 Programmable Calculator is not
specified in any of the operating manuals. This is the opera-
tion of moving lines from one part of the program to another
without rewriting them. If lines are long or a large number of
lines are to be shuffled, it is time consuming (and error
producing) to rewrite the lines to insert them in the proper
place.

It has been found that it is possible to reshuffle lines on
the 9820 without rekeying the lines. This is performed in the
following way: Consider the simple program shown on the
listing; assume we wish to take line 4 and insert it in front of
line 1 of the program; that is, we wish to make line 4 into line
1, line 1 into line 2, etc. without rekeying line 4 into the
calculator. The operation GTO 4 is executed from the
keyboard and the line is recalled to display. The back key is
pressed once to elimate the end of line () symbol and the
instructions ;GTO 1 are keyed into the machine. At this
point the display is:

4:4 - R4;GTO 1
This line is then executed by pressing the execute key and
then the back key; the display then becomes

4—-R4; GTO 1
but now the program line counter is at line 1. Now the back
key is pressed three times to eliminate the symbols (;GTO 1)
and then insert and store keys are pressed in succession.

If the program is listed now (after end and execute are
pressed) the program will be modified as shown. It can be
seen that line 4 has been inserted in front of the original line
1 which has now become line 2.

Some precautions must be observed in transferring
complex lines. For example, when a line contains a JUMP
statement, replace it with DISPLAY until the line is transfer-
red. Lines containing IF statements may be transferred using
this technique by either satisfying the [F conditions before
the line is transferred or by inserting the line readdressing
command preceding the first IF statement, then deleting it
after execution.

Normal Mode

Trace Mode
Recall Line 4

Press Back (3 Times)
Press Insert Store

Modify Line 4
And Execute

Incrementing Logarithmic Scales

by James Lovell of AIL Division of Cutler-Hammer,
Long Island, New York

I have had a number of occasions in which [needed a
logarithmic scale. Without thinking too deeply, I simply in-
cremented the independent variable in the usual way, say A
+ 1 — A. Unfortunately, with a logarithmic scale the incre-
ments get closer and closer, and one never knows whether
to stay and wait or go for a cup of coffee while it plots.
Recently | realized that if | simply increment with A + A —A,
the independent variable doubles in value with each step,
the steps along the independent variable axis are uniform on
the plotter, and the plot is soon over. The plots have suffi-
cient detail for my purposes, but variations on this could give
more or less detail, suchas A + A/2 - Aand A + 2A — A.
Now someone else can have the machine while I have my
coffee.

9820 and 9821 4-5

Muitiple Execution of Single Line

by James N. Shapiro and Dr. Anthony F. Gangi of Texas
A&M University, College Station, Texas

The technique relies on the 9820’s buffer being able to
contain a large number of statements at one time, and con-
sists of executing a single line as many times as desired
manually. An important feature of this procedure is that it
may be performed without modifying program or register
memory. Single line execution can often be used to advan-
tage during program execution at an ENTER statement stop.

The single line execution technique is particularly valu-
able when program memory is full, as it requires no addi-
tional storage. It may also be used to advantage during
execution of an ENTER statement. In this case program
operation need not be interrupted.

Two examples are given below:

1. The following single line may be executed re-
peatedly to print out the addresses and contents of
sequential non-zero registers. (A suitable register, in
this case Z, is first initialized to one less than the
address of the desired starting regjster.)

Z+1;IF RZ # Q; FIXED O; PRT Z;
FLOAT 9; PRT RZ; SPC.
Each time EXECUTE is pressed the next register will
be printed out if it is non-zero. No printout occurs in
the case that the register is zero.

2. The following program willload 1 — R11,4 — R12,
9 — R13, etc., with Z initialized to 10: Z+1; (Z-
10)(Z2-10) — RZ. Keep pressing EXECUTE until the
last register is filled.

The above technique is a real time saver and in some
cases, i.e., when the memory is full, invaluable.

. .}
Integer X Without Math ROM
by Professor Anthony F. Gangi, Texas A&M University

This is an improved technique for obtaining INTEGER X
using the 9820 without a Math ROM. It has the advantage of
working with negative numbers and numbers in the range O
to =1.5, which were not usable with the originally published
technique.

Line 3 in the program shown here contains the main
INTEGER X routine. Lines 1 and 2 take into account the
special case where X = £1.4999999999. In this case line 3
would otherwise fail, since the Model 20 would round this to
+1.5 for display, printing, and comparison purposes, but
retain the exact input number for calculations. X would then
be reduced to +£0.999999999, resulting in INT X = 0. Lines
1 and 2 circumvent this and make the function continuous
for all positive and negative numbers where [X| < 101°-1.

Integer X Program

4-6 9820 and 9821

“Table” Identification

by D. L. Schacher of Tel-Instrument Electronics Corp.,
Carlistadt, New Jersey

The one-line program below determines for which
trigonometric units (degrees, radians, or grads) the Math
ROM trigonometric functions are set in the 9820 or 9821
calculator. This is used in the beginning of a subroutine,
before setting the table needed for the subroutine. The
trigonometric functions can then be reset to the original
TABLE 1, 2, or 3 before leaving the subroutine.

C .]
Logical Comparison

by Dr. R. K. Littlewood, University of Wisconsin, Madi-
son, Wisconsin

The 9820 performs logical comparisons by rounding
both operands to 10 digits of significance before executing
any logical operation (=, #, >, <). Thus, for example, tests
for equality may not be executed properly for pairs of num-
bers differing only in the eleventh or twelfth digit. However,
testing for the equality of their difference to the value zero
will work correctly.

c]
9820 Data Storage

In many applications the use of magnetic cards in load-
ing and recording data in the 9820 is an infrequent occurr-
ence, so a few reminders may help. Aside from the syntax
for loading data, LOD “DA” EXECUTE and recording data,
REC “DA”R() EXECUTE itis useful to know that the high-
est register specified when recording data should be just the
highest one needed. This minimizes the number of magnetic
card sides required.

If a blank magnetic card is used accidentally with the
load data instructions, this will not change the value of data
already existing in the storage registers. This operation will
produce a NOTE 14 when the card finishes going through
the card reader.

Pressing ERASE or switching the power off momentarily
will clear the entire user memory including programs as well
as data storage. However, if the Math block is inserted, pres-
sing TBL 4 will clear only the available R() registers, leaving
intact any programs residing in the memory. TBL 5 clears
the A, B, C, X, Y, and Z registers.

A specified number of R() registers starting with RO can
be cleared of data by loading a magnetic card which has the
desired number of R() registers recorded with zeroes. This
will not affect the contents of previously loaded R() registers
above the highest-numbered one zeroed by the magnetic
card.

Fast Circle Plot
by Sy Ramey, of the Hewlett-Packard Santa Rosa Division

This routine for fast plotting of a circle (up to 10 points or
more per second) uses the 9820 or 9821, 9862, plus Math
and PC I ROM. The user sets equal X and Y limits manually
on the plotter. The routine requires pressing SET FLAG to
terminate plotting and move the pen away from the plotting
area after the circle is completed.

Note that the speed is attained by first plotting a point on
the specified radius, then successively rotating the axes using
a routine involving only simple multiplication, addition, and
subtraction. Mr. Ramey advises that this technique is appli-
cable to linear sine wave plots and function plots such as
sin x/x.

Identifying the Last Marked File

by Dr. R. K. Littlewood of the University of Wisconsin,
Madison, Wisconsin

[sometimes find it useful to know exactly how many files
have been marked on a cassette tape. The following 9820
coding sequence automatically does an Identify File opera-
tion on the last marked file on a tape, provided that the tape
is not currently positioned beyond that mark.

FDF 999; BKS; IDF A,B,C X, BKS

Under normal circumstances, B and C will both have the
value zero, as A will be a “dummy” file; i.e., the extra file
marked in the last Mark Tape operation.

L]
Tape Duplication

by William H. Clayton, College of Marine Sciences,
Texas A&M University

Here is a tape duplication program for the 9820 that
does not copy empty files, is not wiped out by a binary file,
and copies the files exactly. Also, it incorporates adequate
explanatory material concerning the use of the program and
the copying of binary files.

I have used this program several times and found it effi-
cient and trouble free. It may be that other people have run
into the problem of copying tapes and could use this
program.

9820 and 9821

4.7

Speeding Counters

by Howard Rathbun, Hewlett-Packard, Desktop Com-
puter Division

The following program is a straightforward method that
takes 20 seconds to execute 1,000 iterations.

The next program does the same thing in 16 seconds.
The speed increases because the calculator must calculate
where RO is, whereas, it knows where A is.

The next program is even faster, but the reason is not so
obvious. This program takes 10 seconds to do 1,000 itera-
tions. The reason is that the calculator must use the
“number-building routine’’ three times (for 1, 1,000 and Q)
for each iteration in the preceding program, but in this pro-
gram the number-building routine is used only in line 0
before entering the loop. Finding the numbers in registers is
faster than creating them.

Finally, the last program is a bit faster — 9 seconds. This
is because the two statements are replaced by one in line 1.
This program also illustrates the use of a relational operator
to determine whether to JMP 0 or JMP 1.

4-8 9820 and 9821

Double Unary Minus
by R. M. Holford of Deep River, Ontario, Canada

A double unary minus (--) can sometimes be used to
force a change in the normal heirarchy of various operations
in a program line, as illustrated in the following sequence to
print the Fibonacci number series:

Program

Output

In the above program, the double unary minus in Line 1
takes priority in the operational sequence, and the value in X
is stored in a temporary location before the action indicated
by the parentheses is taken. Removing the double unary
minus results in the output below, since the highest opera-
tional priority is then removal of the parentheses; the value
in Y is stored in X first, so the original X value is lost.

The only drawback is that the last set of X and Y data is
printed twice. The following program corrects this but re-
quires the use of R0 and R1. Can someone find a simple
way to correct this problem and still only use the alpha
registers?

Change Settings During
Program Execution

by Steven W. Weeks, Division of Environmental Health,
Kansas State Department of Health, Topeka, Kansas

Changes in the fixed/float and flag settings other than
restoring the previous condition or setting flag 0 are often
desirable while running a program. Such changes may be
made when the calculator pauses for an ENT statement. If
the response to

ENT “NEXT X?”, X
is... FXD 2;SFG 8;25 RUN PROGRAM

the first two actions will be taken before 25 is stored in X.
The value to be stored must always come last. For example,
if the response to the above ENT statement was
25; FXD 3 RUN PROGRAM

3 would have been stored in X. Also, arithmetic expressions
may be executed at such a pause. In the above example, if
the response was

10 —»B; SIN (#/8) RUN PROGRAM

10 would have been stored in B and the result of the expres-
sion in X.

.]
Flag 1 Switch
During Program Execution

by Mr. C. T. McCullough, Collins Radio Company,
Cedar Rapids, lowa

This feature is used to toggle FLAG 1 to indicate whether
or not to print intermediate data during program execution.
Key in the following program and see how it works.

Little Things That Count

The 9820 can save you time in solving day-to-day prob-
lems. Besides calculating equations in algebraic form and
having a very powerful but simple programming language,
the 9820 has many time-saving features that can be used in
several different ways. Which of the following functions do
you use each day?

* EDIT *
* TRACE *
* SET FLAG *
All three of these have obvious capabilities corresponding to
their name. But they will do much more.

For example, the edit functions DELETE, INSERT, RE-
CALL, BACK, and FORWARD can be used to alter calcula-
tions performed from the keyboard as well as to edit pro-
gram lines. Once an expression has been executed, it can be
recalled by pressing DELETE, BACK or FORWARD. With
the elquation back in the display editing can proceed as
usual.

The TRACE function is a very important tool in debug-
ging programs but it can also be used to print data. Press
TRACE prior to entering the data and a record of both input
and output will automatically be printed.

SET FLAG is often used in a program to alter the logic
flow, but is can also do the same thing from the keyboard.
Flag zero is set to 1 by pressing SET FLAG while a program
is running. This allows the user to interact with the program,
for instance to initiate a print or plot routine whenever he
wishes.

One-Line X/Y Integration

by Erik Siwertz of the Institut National de la Recherche
Agronomique in Thonon-Les-Bains, France

What do you think about this one-line X/Y integration
for the 9820A (either with or without a Math ROM)? The tip
works with increasing or decreasing values of X (positive or
negative), two flags (0 and 13), and only the alpha register.

Answering the Challenge of One-Line
X/Y Integration

by Cariton E. Thurston, Martin Marietta Cement,
Thomaston, Maine

The programming tip entitled “One-Line X/Y Integra-
tion” in Vol. 8, No. 2 was quite interesting, and [am unable
to resist Mr. Siwertz’s challenge. Here is my entry:

The basic structure of the program has not been altered,
but two operating improvements have been made:

1. Register C is automatically initialized to zero, and

2. Input data is printed out for reference.

Also note that the FLG 13 term is not required in the
mathematical expression, since the (X-A) term is always zero
when the program is run without a data entry. By omitting
the absolute value operation on (X-A), it is possible to make
corrections to data after it is entered. This is accomplished by
simply reversing the order of data entry until a good entry is
re-entered. Then proceed normally.

9820 and 9821 4-9

Lettering Syntax
by Mr. Jan Kuncar of Prague, Czechoslovakia

The syntax of the “letter’” statement described in the

9820 PC I Operating Manual,
LTR X, Y, hwd
can be generalized to the following form:
LTRX Y, E

where E is an arbitrary expression. The sign and decimal
point of the value E do not affect the results. The three most
significant digits are interpreted as h, w, d, respectively.
When h or w is zero, height or width of the character, respec-
tively, is also zero. The value of d is taken modulo 4, i.e., 0,

4, and 8 have the same effect. A missing character is inter-
preted as zero (e.g., LTR 0, 0, 72 is interpreted as LTR O, 0,
72.0)

Examples

The following program will plot a series of “A’ charac-
ters of increasing height:

s

Each of the following lines has the same effect (V30 =
5.4772...):

The following program plots the “D”’ characters from the
same point in all directions:

4-10 9820 and 9821

Extending Definable Functions

by Mr. D.F. Ashcroft, Senior Mining Engineer, Cobar
Mines PTY. LTD., Cobar, N.S.W., Australia

When using a 9820 with three plug-in ROM:s (e.q., UDF,
Math, PC 1) only five keys remain available for user-defined
functions or subprograms. This limitation can be overcome
by combining several functions on a single key by using the
UDF parameter “P1” to define a jump to the particular
routine. For example the code would be organized as fol-
lows:

0: “SUB”; JMP P1+
1: Routine one
2: Routine two

A particular routine can be called by:
CLL. SUB 5
where 5 is the line number of the routine being called.

C
BASIC Integer To Algebraic

by D. L. Schacher of Tel-Instrument Electronics Corp.,
Caristadt, New Jersey

Recently a problem was encountered in translating a
BASIC program into algebraic for the 9820A. BASIC says
that the function INT “gives the largest integer < the expres-
sion”, while the MATH ROM INT “eliminates fractional part
of value; does not affect sign or integer value.” For positive
numbers, there is no difference, but for negative numbers,
INT (BASIC)(—1.5) = —2, while INT (Algebraic)(—1.5) =
~1. Thus, when rewriting a BASIC program for the 9820A
or 9821A where negative values may occur, instead of
INT(X), write INT[X—(0>X)], to maintain the same
meaning.

./
Faster Integer Powers

by D. L. Schacher, Tel-Instrument Electronics Corpora-
tion, Carlstadt, New Jersey

A surprising amount of program execution time can be
saved by efficient coding. Functions such as X1Y, which is
calculated by the 9820 Math ROM as Z = e ¥¥ where
both e* and InA are calculated by an iterative method, are
time consuming. Consequently, when a function is squared
or taken to an integer power of a reasonable size, it improves
execution time to use straight multiplication rather than the
power function. For example the function:

A+B-2c/x)12->Y
should be coded as
(A+B—2c/x) > ZZZ-> Y.

High Speed File Identification

by Koichi Tanaka of Yokogawa-Heuwlett-Packard, Ltd.,
Tokyo, Japan

IDENTIFY FILE (IDF) is often used to determine the
construction of the cassette files. Although Program A (be-
low) will accomplish this, it works very slowly when the files
are large.

My program, B, works rapidly because of using high
speed search capability. It takes about half as much time to
identify files using B as using A.

Program A Program B

Example

1V «————— File no.

- «@—— File type
-§———— Current size
-t————— Absolute size

“DO” Loops

by D. L. Schacher of Tel-Instrument Electronics Corp.,
Carlstadt, New Jersey

Figure 1 below shows the normal manner of program-
ming two nested loops on a 9820 or 9821 which, while
efficient, does not always indicate the broad picture of what
is being accomplished. In FORTRAN, for example, the
“DO" loop indicates what is to be done, without getting
involved in the question of how to do it.

Itis possible to write “DO” loops on a 9820 or 9821, as
shown in Figures 2 and 3, using a “DQ” key on the UDF
ROM. This “DO” key is somewhat better than the FOR-
TRAN “DQ”, as it can be nested up to 11 deep, and can
have positive or negative initial, final, and incremental
values.

The “DO” key (Figure 2) uses five passing parameters:
P1 is the DO loop number (from 1 to 11), to allow keeping
track of which loop ends where; P2 is the variable, P3 is the
initial value, P4 is the final value, and P5 is the increment or
decrement. The line before each CLL DO must have CFG
N: SFG 12, where N is the loop number; while the end of
the loop is signified by IF FLG N = 0; GTO (CLL DO line).
Figure 3 gives a sample program using the “DO’’ key, while
Figure 4 is the resulting printout.

Fig. 2 Defined “DO”’ key

Fig. 1 Conventional loop
nesting

Fig. 4 Output of “DO”

routine

Fig. 3 Mainline program
for “DO” loops

9820 and 9821 4-11

‘No-Operation’ Editing Aid

In modifying a 9820 program containing line-dependent
branching addresses, such as GTO + 3 or GTO 17, you
may wish to include some no-operation lines. These lines
can replace active lines which are to be deleted, thus avoid-
ing changes in branching addresses.

To replace an active line by a no-operation one, just
address the desired line, such as GTO 2, then press CLR
STORE. The resulting line,

2:F
is a no-operation line which takes minimum memory, replac-
ing the previous line 2.

At the STORE command for this type of line, the line
counter does not advance; you must manually address it to
the next line. In this case, press GTO 3, followed by CLR
STORE if line 3 is to be a no-operation line, or GTO 3
EXECUTE if line 3 is to contain active instructions. During
program operation, the line counter automatically steps past
the no-operation lines until the next active line is reached.

No-operation lines are most useful in editing existing
programs to minimize the number of edits. Using label ad-
dresses in writing a new program gives the maximum editing
flexibility, since this makes the program independent of line
insertion or deletion.

4-12 9820 and 9821

Section 5
9815

Index
Section 5-9815

Duplicating Tape Cartridges

9815A DataEntry

Biocurve and Bionumbers on the 9815

Duplicating Tape Cartridges

Originally submitted by F. William Schueler, Rollway
Bearing Company, Syracuse, New York 13201, U.S.A.,
modified by Desktop Computer Division

Here is a program to duplicate the contents of a tape
cartridge either for use at another location or as a safety
measure to insure against accidental loss of programs due to
tape damage.

The program runs on the 9815A Opt. 001 (2008 steps)
and has the following limitation:

1. Only cartridges containing file types 0, 2, 5 or 6 can
be duplicated and

2. Files containing more that 1812 program steps or

227 data registers will not be duplicated. A 2000-
step empty file will be marked and this will be noted
on the printout. An empty file will be marked as
such and also noted on the printout.

The operation of the program is as follows: After entry
“END” and “RUN" are keyed. The printout calls for
“MIN.FILE#". This is the algebraically lowest file number,
ie.: —3<—0<0<1. This number is entered and “RUN" is
keyed. The printout calls for “MASTER”. The cartridge to
be duplicated is placed in the tape drive and “RUN"’ keyed.
The printout calls for “COPY”. The cartridge on which the
duplicate recording is to be made is placed in the tape drive
and “RUN” is keyed. Continue alternating the two car-
tridges until duplication is complete and “END” is printed
out.

Steps 120 through 125 govern the size of file in which
each program is recorded. In order to allow for changes that
may be made in the program, the file will be marked at least
150 steps longer than the program.

The 1812-step limitation on the length of the program to
be duplicated is obviously caused by the necessity of retain-
ing the duplicating program in memory. In order to handle
as many steps as possible, I have tried to reduce the ALPHA
to a minimum.

When copying an entire tape, the min and max file
numbers should not include the extra files, since they are
implicitly copied.

If a different ‘cushion’ is desired between the program
length and the file length, merely change the constant in
lines 120-122 and, if the change is an order of magnitude,
adjust the constant in line 124 accordingly; i.e., if lines 120-
122 were changed to 10, then line 124 would be changed to
1. If no ‘cushion’ is desired, delete lines 120 through 125.

9815 5-1

9815A Data Entry

by Chris Jennings, Graylingwell Hospital, Chichester,
Sussex, United Kingdom

Entering and storing strings of single digit numbers on
the 9815A can be a tedious process because of the need to
press Run/stop after each digit. The routine below enables
the user to key in up to 10 digits at a time, pressing Run/stop
once only at the end of the string, thus saving time. The
program splits the 10 digit number into 10 single digit num-
bers and stores each one in a separate register.

The number of digits entered together can be set to any
number from 2 to 10 by changing the value of B. The value
of E indicates the register into which the single digit number
will be placed. The program can also be used to store
multi-digit numbers. By changing the value of I, a string of
digits can be split, instead, into 2-, 3-, 4- or 5-digit numbers.

This routine can be incorporated into larger programs
and by use of a further loop, longer strings of digits can be
entered in groups of up to 10 (e.g. 50 digits in 5 groups of
10).

Biocurve and bionumbers on the 9815

by Edgar Albert, Kronenstrasse 15, 7809 Denzlingen,
West Germany

For those readers who believe biorhythm information
can be helpful, here are two programs you may want to try.
Both programs produce information related to biorhythms.

The first program takes your date of birth, as well as a
second date of your choice, and calculates your values for
three factors on that second date. These factors are:

man rhythm = M

woman rhythm = W

intelligence rhythm =J

The second program prints a + or — in each of the
above categories for each day of a month you specify.

5-2 9815

9815 5-3

54 9815

Section 6

9810

Index
Section 6 - 9810

Printer Alpha Test 6-1
Clearing Data Registers 6-2
Economical “If Y = 07 Test 6-2
Sequential ‘If Conditions i 6-2
TerminatingData Entry 6-2
Extending Definable Function Key To Any Number of Functions 6-3
Data Printout 6-3
Extending Lagrangian Interpolation 6-4
Special Label Sequence 6-4
Non-Zero Data Printout 6-5

Pen Drop Control o 6-5

Printer-Alpha Test

The Model 9810 Calculator may be purchased with the
column printer with or without the Model 11211A Printer
Alpha ROM which gives alpha printing capability. The ROM
can be purchased separately and plugged in later. Programs
can be written to include alpha statements but they are cap-
able of operating either with or without this ROM. This re-
quires a test for the presence of the ROM. The following
program sequence will always operate correctly.

With Alpha Without Alpha

Ptk ek ek = O X
OO0 OO
COOOOOON
COOHFEHOX
COOOOOOKC
OO0 OON

} Any Address

If the Alpha ROM is in the system, the equality test at
step 0007 is not met, so the program skips the next four
instructions and continues. Without the Alpha ROM, the test
is met and the program branches to the designated address.

Note that the GTO statement must follow the X =Y
statement in this case only; in the general case branching is
automatic, as it is in the 9100A/B. Also note that in the
9810, the branching address normally takes four steps, and
a not-met condition causes the next four steps to be skipped.

From the above point, the program usually follows one
of three routes.

1. Ifthere are no other alpha sequences in the program
it might continue as follows:

2. If additional alpha sequences are used in the pro-

gram, further branching can be directed by activating

SET FLAG at the end of each alpha section except
the final one. For example:

3. If additional alpha sequences are used in the pro-
gram but the SET FLAG is not available, the 1 or 0
left in the x register at step 0005 above can be
stored, then recalled for a test prior to each sub-
sequent alpha sequence. For example:

9810 6-1

Clearing Data Registers

by John A. Beaujean, Continental Can Company,
Augusta, Georgia

The step sequences shown below will clear the 9810
data registers for the basic machine or with Option 001.
Actually this would be the first section of a larger program
which requires cleared registers before starting entries,
summations, etc. The remainder of the program would start
at Step 0015 (0016 for the Option 001 illustration), but a
digit could not be used there. The undesirable termination of
program execution by a status condition is avoided.

Economical “If Y = 0” Test

by Professor L. Glasser, Chemistry Department, Rhodes
University, Grahamstown, South Africa

The test “if y = 0"’ may be economically applied on the
9810 Calculator by adding the contents of x- and y-registers
into the y-register, and testing the resulting x- and y-register
contents for equality.

Thus, with y containing the quality to be tested, and any
quantity to be operated on in x, include in the program:

If y = 0, then the equality will be satisfied, otherwise not.

6-2 9810

The same technique will suffice to provide ““if y > 0”
and “if y < 0", tests with the “‘x = y"’ key being substituted
by the “x < y” and “x >y keys, respectively. These
operate correctly whatever the x-register contents, except
where the inequality between x and v is large enough so that
one of the numbers is lost by rounding. The test will gener-
ally work for magnitude differences up to 10°.

Sequential ‘If’ Conditions

by C.D. Goode, University of Manchester, Manchester,
England

Two sequential ‘IF’ conditions can be used in a 9810
program to give an instruction to jump only if both condi-
tions are true. As an example, the sequence

FX=Y
[F FLAG
GO TO
LABEL

4
CONTINUE

causes a jump to LABEL 4 only if both conditions are true.
The CONTINUE acts as a no-operation step if the first condi-
tion is not true.

This type of instruction sequence is also useful in testing
whether the value (X) lies between (Y) and (Z):

FX>Y
ROLL 1
FX>Y
GO TO
LABEL
ROLL 1

CONTINUE.

If (Z) > (X) > (Y), the program branches to ‘LABEL
ROLL 1. It is convenient to use ‘ROLL 1° as the label
because whichever condition is not met the registers contain
thesameresultZ =y, Y =x, X = z

Terminating Data Entry

by Mr. Oliver H. McKagen, Ill, of Joseph C. Draper &
Associates, Blacksburg, Virginia

Many programs call for entering a series of data values
into a summation or repetitive routine as a first or inter-
mediate step in computing a final answer. Very often the
series is terminated by a SET FLLAG by the operator. This
often results in entering an incorrect or zero value if he
forgets to set the flag before pressing CONTINUE. A possi-
ble solution to this problem is to test the entered value for
zero and when this condition is met have the program
branch to the appropriate routine. Thus the task of the
operator is simplified to entering a zero and pressing CON-
TINUE once all the data has been entered.

Extending Definable Function Key
To Any Number of Functions

by Professor A. S. Gladwin, McMaster University, Hamil-
ton, Ontario, Canada

This tip points out the fact that the 9810 Math Block
Definable Function key can be programmed to call any
number of user-defined functions. The general concept is to
store various functions as subroutines and then by a stored
code call them from the {()} program. In other words, given
the function fu(y), y is a number stored in the y-register and n
is a number identifying the function stored in say the
x-register. The flow of the program would be to check the
code in the x-register for the designated function and then
make the computation on the value in the y-register. A sam-
ple program might be coded as follows:

LBL

F
RUP

1 A
X=Y
CNT ,
GTO Check for f1(y)
LBL

A

20
X=Y
CNT
GTO
LBL

B
3
X =

L Check for f2(y)

Y

LBL

A .
DN Subroutine to
calculate fi(y)

Calculate
fi{y)
S/R
LBL

B
DN r Subroutine to

Calculate calculate f2(y)
f2(y)
S/R

Data Printout

by W. J. Butterworth of the Admiralty, Underwater
Weapons Establishment, Portland, Dorset, England

This subroutine prints out the contents of the 9810’s
data storage registers. A STOP instruction is included so that
the user may enter the number of registers required. The
total number of registers is limited to 108 for the 9810 with
Option 001 (111 registers) or 48 for the basic machine. The
labels may, of course, be changed to suit the user.

Program Listing

Partial Data Printout

9810 6-3

Extending Lagrangian Interpolation Special Label Sequence

by M. Jean-Pierre Borgogno of Marseilles, France by Cristian Langfelder, Hewlett-Packard, B&blingen,
. . " . . West Germany
This suggestion modifies the Lagrangian Interpolation
program, III-8 in the 9810 Math Pack, to compute up ton = This tip demonstrates the usefulness of the ‘LBL’ key in
19. It consists of changing four program steps: branching routines.
Up to three normal program steps may be inserted after
Existing Step Change To a conditional branching instruction without canceling the
Step ——E— Code @_—_—C—ode branch condition. In the following sequence:
0015 2 02 3 03
0016 3 03 0 00
0092 2 02 3 03
0093 3 03 0 00
x2
EXAMPLE: y =73n= 19
Findyatx = 2.50
x= 7.50
x = 18.50
x = 19.50

The ‘LBL 7’ instructions will be ignored if the condition for
branching is not met.

Program Listing

6-4 9810

Non-Zero Data Printout [Clear Flag |

by A. S. Hausrath, manager of mechanical design forthe
Minuteman, Systems Group of TRW, Inc., San Bernardino,
Califoria

Calculation

For debugging purposes, it is frequently desirable to be
able to “dum%gl’ t%g ccr)I:r)ltents of only the dzta registers con- Mﬁ‘;,e-l-l:fn YES lgz“fnP;:
taining other than zeros. It is convenient to keep a program Specified Specified
handy that will be compatible with almost any program in Position Position
the 9810 and be able to provide this dump. This require- '
ment more or less precludes the use of symbolic addresses. ‘j

By entering the following program to end at the Set Flag NO Plot
highest-numbered step in the memory, and using fixed ad- Solid Line
dresses, the chances of interfering with the main program) ?
are minimized. Note that no end statement is needed. The Label 1

program lists the contents of the a and b registers, and lists
all other non-zero data entries and their locations.

Sample Data Print-Out \
Label 1

Figure 1. Flow Chart

Sample Program

The routine has been incorporated into a program to
plot the line X = Y, in increments of 100 until Y = 9000.

Program Listing

Pen Drop Control

by Dr. James Lindauer, MD of San Francisco General
Hospital

The routine overrides the pen drop when proceeding to
the first point plotted, then allows plotting of a solid or
dashed line. This applies to the 9810 with the plotter ROM.

9810 6-5

Section 7

eneral

Index

Section 7 - General

9800 Program Verification

.. 7-1
Reducing Forward Search Time In Cassette Applications 7-1
Improved Tape Identification (9865A) 7-1
Magnetic Card Versatility (9810,9820) 7-1
Changing Programs Fromthe HP 6510 9815A 7-2
Making Dashed Plots with the 9862A

9800 Program Verification
by Don Sullivan, Raytheon, Burlington, Massachusetts

To check a program that was printed out correctly at a
previous date but operates incorrectly when reentered in the
calculator, list the program again. Place the two printouts
over each other and hold them up to the light. Any differ-
ences show up readily, allowing corrections to be made.

Remember that occasional cleaning of the magnetic
heads in your cassette reader or card reader is needed to
maintain high reading accuracy.

Reducing Forward Search Time
In Cassette Applications

The method presented here is useful in any application
requiring the use of large files (sizes greater than 50 registers)
on the Cassette Memory. A forward search is initiated by the
LOAD FILE, FIND FILE, or the RECORD INTO FILE com-
mand when the current file number is less than the file
number being searched for. The forward search procedure
is to fast search up to the file before the one in question and
then do a slow search until the file in question is found. A
significant delay occurs when the slow search is done
through a long file. This delay does not occur in a backward
search because backward searches are performed entirely in
the fast mode.

When the tape is initially marked, insert a short file
(minimum 1 register) between any two files in which the first
file is longer than approximately 50 registers. The effect of
this added file is that the slow search through a short file is
barely detectable. The cost of this reduced search time is 54
words for header information for the file and 6 words to
store 1 register of data, or 60 words per 1-register file. Since
the approximate total number of words on a tape is 44,000,
one 1-register file will occupy only .1363% of the total tape
capacity. Seventy-three such buffer files will occupy 9.95%
of the tape capacity.

Cassette Commands

9810A 9820A
Find File EMT, 5, 5, CLX FDF
Load Program FMT, 5, 5, CNT (S/R) LDF
Load Data FMT, 5, 5, XFR LDF
Record Program FMT, 5, 5, K RCF
Record Data FMT, 5, 5, XTO RCF
9830A
Find File FIND
Load Program LOAD
Load Data LOAD DATA
Record Program STORE
Record Data STORE DATA

Improved Tape Identification (9865A)

by A. Scott Parrish, Bureau of Research, Maryland De-
partment of Transportation, Brooklandville, Maryland

This tip concerns the tape identification program in the
9865A cassette memory pac for the 9815. The program has
been altered so that each file marked on the tape is identified
whether there are any errors or not. The changes begin at
step 200.

Mr. Parrish’s changes make the program identify each
file as it finds it rather than using register ‘@’ as a counting
sequence.

Magnetic Card Versatility (9810, 9820)

The magnetic cards designed for use with the 9100A/B
Calculator can be used to record programs for the 9810 and
9820. One side of a 3 5/8 inch (9.2 cm) card, Part No.
9320-1144, will record an average of 225 program steps on
each side. Card sides can be recorded sequentially until the
9810 INSERT CARD light extinguishes, or untl NOTE 14
no longer appears in the 9820 display. Similarly, the 6 inch
(15.2 cm) cards, Part No. 9162-0012, for the Model 10 can
be used for the Model 20 for short programs.

Use of the 10 Y2 inch (26.7 cm) magnetic cards, Part No.
9162-0045, for recording longer programs on the 9810 may
provide both economy and increased loading and storage
convenience.

General 7-1

Changing Programs From the HP 65 to
9815A

by Neville Joseph, Bucks, England

It is fairly clear that the programming languages of the
9815A and the HP 65/67 are similar, and no doubt a
number of readers have converted programs from the
smaller machines, normally a fairly trivial procedure with
obvious differences such as conditional skips.

Not so obvious (and not appearing in the 9815A man-
ual) is the different treatment of Last X after a RECALL
instruction. The HP65 leaves Last X unchanged, while the
9815A loads the old X (and new Y) into it.

I hope that publicity on this point will save some of my
colleagues a little debugging time.

Making Dashed Plots
with the 9862A

by J.N. Shapiro and R.J. Woodward, Texas A&M Uni-
versity, College of Geosciences, College Station, Texas

Hewlett-Packard’s routine for making dashed plots with
the 9862 (page 3-6 of the 11220A Peripheral Control [
Operating Manual) alternates solid lines a preselected
number of x units long with spaces a preselected number of
x units long. If the function being plotted has a small slope,
the resulting plot can be made to consist of dashes (and
spaces) of about the same length, as desired. However, if
the function has steep parts, the length of the dashes (and
spaces) can get very long, theoretically approaching infinity
for a function of infinit slope; for example, In x as x — 0. See
Figure 3.9 on page 3-6 of the above reference for an exam-
ple using cos 3x.

The reason for this is very simple. Equal increments in
the independent variable, x, are not generally equal incre-
ments in arc length, s. For plotting purposes, it is equal
increments in s which are desirable.

Mathematically speaking, the effects of a changing slope
may be taken into account quite easily. One simply uses the
definition of ds, a differential element of arc length.

ds = VE T a7
ds = dx V 1 + (dy/dx)?

Here dy/dx may be calculated for each point, or the
finite difference Ay/Ax between adjacent points may be
calculated.

In practice two other effects must be considered. First,
both y and x must be scaled by the total number of units of
each covered by the plot. That is, aline corresponding to .1
y units will cover .1/10 = .01 of the graph’s height if y goes
from 0 to 10 (or —5 to 5, etc.), whereas the same .1 units
will plot twice as long if y goes instead from O to 5.

A second effect is the physical size of the graph. The
appropriate coordinates should be multiplied by the length
of the graph in their direction. In terms of units along the x
axis, and including both of the above effects, ds is given by

ds = dx V 1 + (A dy&dx)?

(height of graph)

{(y max — y min)

where A = (x max — x min)

{length of graph)

7-2 General

The program (Figure 1) generates equal length dashes
as shown in the two plots of In x, one with equal size dashes
and one without (Figure 2). Note that the x increment
should be small and the number of increments per dash
should be large for best dash equality.

This suggestion is interesting because of its utility, but
perhaps even more so because it illustrates very simply an
elementary concept of calculus.

Figure 1. Routine for equal dash length.

s » 7 equal dx
7

t / Inxwvsx

Figure 2. Comparison between using equal x increments
and equal arc increments for dash length.

General 7-3

Printed in U.S.A.
(2/80)13.6K

For assistance write Hewlett-Packard, 3404 East Harmony Rd, Fort Collins, Colorado
80525; in Europe, Hewlett-Packard GmbH, Desktop Computer Division, Herrenberger
Strasse 110, D-703 Boebtingen, Posttach 1430, West Germany; etsewhere in the world,
Hewlett-Packard Intercontinental, 3495 Deer Creek Rd, Palo Alto, California 94304.

K2 5aciaro

pos

